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Abstract— This paper presents an architecture and algorithms
for optimizing the performance of web services. For a given ser-
vice, session-based admission control is combined with stage-wise
request queuing, where the stages represent sub-tasks within ses-
sions. The scheduling of requests is governed by generalized pro-
cessor sharing. We present a performance model, relying on on-
line estimation of parameters describing client-server interaction.
A reward function corresponding to the service provider’s objec-
tive is maximized using techniques for nonlinear optimization. In
a case study, we model and optimize the resource sharing at a web
server hosting an electronic store. The performance advantages
of our approach are quantified numerically, and the robustness to
parameter estimation errors is assessed by sensitivity analysis.

Index Terms— Web server scheduling, admission control, QoS,
reward maximization, generalized processor sharing.

I. INTRODUCTION

For service providers on the Internet, high availability to the
users is crucial. For a service to be available, it is not sufficient
that the web server eventually responds to HTTP requests. The
response time is also important. Selvridge et al. [1] found that
long delays increase user frustration, and decrease task success
and efficiency. In another study, Bhatti et al. [2] let users rate
the Quality of Service (QoS) of an e-commerce application in
experiments where the delay was varied. Among the conclu-
sions were:

� Users tolerate different levels of delay for different tasks.
For example, the tolerance was higher for viewing the con-
tent of the shopping cart than for viewing the product cata-
log. Further, the tolerance decreases with the length of the
session.

� The tolerance for delay depends on how a page is loaded.
Specifically, users accept longer delay if content is pre-
sented incrementally, as opposed to presenting all the page
once its entire content has been loaded.

� With non-incremental loading, users rated the quality as
“high” for delays ranging from 0 through 5 seconds, “av-
erage” in the interval 5 through 11 seconds and “low” for
delays longer than 11 seconds.

� Users who experience long delays are likely to abort active
sessions prematurely.

The above findings suggest that users’ reactions to response
delay should be integrated in the design of web services.
This paper addresses the problem by proposing a scheme for
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scheduling of client requests and session-level admission con-
trol. The scheduling makes use of the generalized processor
sharing (GPS) discipline. We focus on high-load situations,
where the utilization of a bottleneck resource is close to the
capacity limit. The key idea is to make the scheduling and ad-
mission control algorithms aware of the structure of the web
service. After estimating parameters describing the dynamics
of client-server interaction, request scheduling and session ad-
mission control can be optimized.

The paper is organized as follows: Section II provides back-
ground on web server control and GPS. Section III outlines the
system architecture and provides our mathematical model of the
web server and its load. In section IV, the rules for scheduling
and admission control are derived. Section V describes the sys-
tem configuration used in the numerical case studies conducted
in section VI. Finally, section VII concludes the paper.

II. BACKGROUND

A. Resource Control in Web Servers

A web server is forced to delay the response to a request
when some resource necessary for processing the request is
busy. In [3], three possible bottleneck resources were identi-
fied: HTTP protocol processing, reading data from disk and
transmission of data on the network downlink. In the exper-
imental setup of that study, the network was found to be the
main bottleneck.

Web servers normally use either thread or process concur-
rency to handle concurrent requests. With process concurrency,
session scheduling is done by the operating system, out of reach
from the application. With thread concurrency, session schedul-
ing can be done by the application. In [3], an experimental web
server making use of one thread per connection was used to
study effects of different scheduling policies. In this work, we
assume that it is possible to implement the scheduling policy in
the web server, for example based on thread concurrency.

Recent work on web QoS has proposed session-based ad-
mission control as a mechanism for preventing overload and
limiting response delay [4], [5]. By rejecting requests if the
measured load exceeds a threshold, admission control can pre-
vent the server from entering a regime where delay is excessive
or where dropped requests result in aborted sessions. Although
the HTTP protocol is not session-oriented, sessions can be clas-
sified using cookies, client IP addresses or other mechanisms.

Cherkasova and Phaal [4] showed in simulations that an
overloaded web server can experience a severe relative loss of
throughput measured as the number of completed sessions per
second, compared to the relative loss of requests per second.



They also found that web servers are unfair to long sessions,
and proposed a measurement-based algorithm for session ad-
mission control that was shown to prevent overload and provide
fairness with respect to session length.

Kanodia and Knightly [5] combined session-based admission
control with service differentiation, devising a server architec-
ture having one request queue per service class. In simulations,
they showed that this enables their algorithm for admission con-
trol and scheduling to limit delay and achieve service separation

B. Generalized Processor Sharing

A GPS server serving
�

sessions is characterized by pos-
itive, real-valued weights ���������	���	�
���� [6]. Let �����������������
be the amount of session- � work in the interval ������������� , and� ������������� be the total amount of service provided by the server
during the same period. A work-conserving GPS server is de-
fined as one for which

� � ��� � ��� � ��!� " � ��� � ��� � �#%$'&)(+*-,�.
/ � $ �10��32546��� � � (1)

holds for any interval ��� � ��� �87 during which 46��� � � , the set of
backlogged sessions at time � � , does not change.

The fraction 9;:
*-,=<8> , . /
? : is called the normalized service of-

fered to session � during he interval ��� � ��� � � . From equation (1)
it follows that the GPS provides the same amount of normalized
service to any session backlogged during the interval ��� � ��� �87 .

Moreover, because the maximum number of sessions is lim-
ited by

�
, the minimum amount of service that a session re-

ceives is limited by

� � ��� � ��� � �A@ ���# �$�B � � $ � ��� � ��� � � (2)

for any time period ���
��������� during which session � is contin-
uously backlogged, regardless the behavior of other sessions.
This property can be used to guarantee minimum service rates
in computer and communications systems. In this work, how-
ever, we focus on the mean service rates.

GPS is an ideal server, assumed to be capable of serving all
backlogged sessions simultaneously and requiring that the traf-
fic is infinitely divisible. In more realistic systems, only one
session can receive service at a time. There are several ways
of emulating GPS service, for example [7], [8] and [9]. As this
paper does not present any implementation, no particular algo-
rithm for emulating GPS is chosen.

III. SYSTEM ARCHITECTURE AND MODEL

This section describes the architecture of the admission con-
trol and scheduling blocks of an application-aware reward-
maximizing web server, and provides some implementation as-
pects. Further, we introduce the mathematical notation and the
model of the dynamics of the web server.

A. System architecture

When the initial request of a new session is processed by the
server, an admission control algorithm either accepts or rejects
the session. The admission controller is rate-based, limiting
the intensity by which new sessions are admitted. If the ini-
tial request is admitted, all subsequent requests within the same
session will also be admitted. A session classifier, which for
example can be based on cookies or client IP addresses, main-
tains a table of active sessions. The termination of sessions can
be detected using time-outs, or from users logging out.

Once established, a session resides in a fixed set of
stages. An example of such a set in an e-commerce applica-
tion is � Welcome, Browsing-Empty_Cart, Browsing-
Articles_in_Cart, Checkout  . The clustering of re-
quests into stages is further discussed below. After a request has
passed admission control, a stage classification step follows.

Following stage classification, the request may have to wait
in a queue before receiving service. We propose stage-wise
queueing; that is, requests are classified with respect to the re-
quested stage, and enter a stage-specific FIFO queue. When the
critical resource is freed, a scheduling algorithm dequeues and
grants service to one of the requests that is at the head of its
queue. The scheduling algorithm is assumed to emulate GPS.
Figure 1 summarizes the system architecture.

Making the web server aware of application-layer stages
means that the server must be reconfigured with respect to the
specific application. However, this procedure can be done semi-
automatically, and needs to be invoked only when a service is
launched or significantly modified.

For use by the optimization algorithm, the server must col-
lect statistics about client-server interaction. Such statistics in-
clude page sizes, arrival intensity of requests for new sessions,
counts of the number of requests per stage, and counts of how
many times a stage was requested following a request for an-
other stage. Tools for this are commonly available.

B. Server dynamics

After a page (belonging to a stage) has been downloaded, an
idle period follows while the user processes the page. Then the
user may make a new request. After a possible delay, the server
produces and returns the new web page. At this point, with
a probability that depends on the delay in server response, the
user terminates the session. If not, a new (or the same) stage is
entered, and so forth.

In e-commerce applications, the user may pay at transitions
from certain stages to other. For services not associated with
any payment, rewards that reflect the objective of the server
provider may be associated with transitions between stages.
For instance, the web-based help-desk of a computer manufac-
turer’s may have a unity reward associated with every down-
loaded help document.

It is not our goal to model the details of the internal process-
ing of a web server. Instead, we observe that some bottleneck
resource limits the amount of data that can be delivered within
a fixed time slot. As stated in [14], any resource of a web server
(CPU, physical memory, disk, network) may become the bot-
tleneck, depending on the kind of workload it is experiencing.
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Fig. 1. Admission control and scheduling of HTTP requests

In this paper, we assume that the service rate of this bottleneck
resource is a constant � , and that the time � required to process
a web page of size

�
is � "

��� � . If desired, other delay models
could be used instead within our framework.

The probability that a user does not terminate a session be-
fore completion of the processing of a request is represented by
a patience function. Denote such a function by � ��� � , where
� @�� is the time from when a request is received by the server
(excluding time spent in the listen queue) until the processing of
the request is completed. Thus, � �	� � is monotonically decreas-
ing. Since � does not include network delay, the end-to-end
delay of a web server response can be longer. Due to impa-
tience caused by this additional delay and due to the positive
probability of a user terminating a session even if the response
to a request is immediate, � �
� � can be expected to be less than
1.

Let � " ��)���	���'�
�  be the set of stages, where an arbitrary

stage � 2�� be characterized by the following:
� distribution � � ��� � of reward obtained if the client success-

fully downloads a page at stage � , having mean �� �
� distribution � � ��� � of the number of work units needed to

process a request for this stage, having mean �� �
� probability that a session is initiated at this stage, ���

� transition probabilities, � $ � , � 2�� — the probability that
the next requested stage is � , given that the session is not
interrupted

� patience function, � ���	� �
Moreover, denote the full matrix of stage transition proba-

bilities by � . In section IV, further stage-specific variables
are introduced, associated with the choice of optimization al-
gorithms.

For fixed response delay, the model of stage transitions
within a session is a Markov chain, where a stage corresponds
to a Markovian state. The reason for aggregating requests into
stages (and not to treat each possible type request as an indi-
vidual stage) is to limit the number of states in this Markov
chain. This has the benefit of limiting the number of requests
needed to observe before reliable estimates of the stage-specific
parameters can be made, and it speeds up the convergence of the
algorithm for optimization of scheduler parameters.

The properties of pages making up a stage should be similar,
in the sense that the parameters listed above should be roughly
equal. Menascé et al. [11] proposed an automatic process
for stage classification and estimation of per-stage parameters,
where a clustering algorithm such as � -means delineates the
stages. The clustering problem closely resembles the state ag-
gregation problem in the dynamic programming literature. The
ideas outlined by Bertsekas [12] for reducing the number of
states in Markov decision processes could be applicable.

Future development of the model may include other relations
between the size of a web page and the processing time. For
example, Chen et al. use a model where delay is the sum of a
constant and a term that is proportional to the page size [10].

C. Objective

The goal of this paper is to develop algorithms that keep de-
lay low for sessions expected to generate high reward, to pre-
vent these sessions from terminating prematurely. If the server
operates in an overload regime, sessions in stages less likely to
generate reward pay the price for this by longer delays. Session
admission control may help to avoid excessive delay.

Denote by �!� the request arrival rate at stage ��2�� . Let
�� � be the expectation of the patience function at this stage,
�� � "

� ��� ����� �8 , where � is the response delay. The objec-
tive of our web server control is to maximize the average re-
ward rate,  , defined as the rate of completed jobs (in response
to client requests), multiplied by their associated expected re-
wards:

 "
!
� &#" �!�$�� �%�

� � � (3)

Based on stage-wise queueing, heuristic algorithms could be
constructed by prioritizing sessions in stages from which stages
associated with high expected reward can be entered. However,
it is not obvious how to design such a priority scheme in an
optimal way. Instead, the approach taken here is to apply an
optimization algorithm that computes the weights for a GPS
scheduler, such that the reward rate is maximized.



IV. REWARD MAXIMIZATION

In this section, we develop equations and algorithms for com-
puting reward rate and per-stage delays for given session arrival
rates and scheduling weights. Once these relations are estab-
lished, algorithms for for constrained nonlinear optimization
can be applied to perform the reward maximization. The result
is an open-loop controller, based on equilibrium assumption.
The server-specific variables used in this section were previ-
ously introduced in section III-B.

A. Arrivals and controls

For a typical web service, the intensity of session arrivals
varies according to a distinct pattern with a 24 hour period [10].
This can be modeled by a modulated Poisson process with time-
dependent intensity. We denote the session arrival rate during a
period of constant intensity by � .

As stated in section III-A, the session admission controller
puts an upper limit on � . Denote the maximum admitted session
arrival rate by ������� .

Recalling that every request is classified into the set of stages
� , denote the rate of request arrivals at any stage � 2�� by � � .
Further, let � � be the scheduling weight assigned to the request
queue at this stage, denote by �� � the mean number of requests
in this queue, and let �� � be the mean time from entering the
queue until service is completed.

B. Effective service rates

Only if all queues are backlogged, the service rate of an arbi-
trary backlogged queue � will equal the minimum rate implied
by equation (2). Otherwise, the minimum service rates of the
empty queues will be shared among the non-empty ones, ac-
cording to equation (1). Denote by 	�
������ the instantaneous ser-
vice rate at time � that an ideal GPS server grants to a session �
in the instantaneous set of backlogged queues, ��2 46����� .	�
 ����� " � � 
#%$'&)(+*-,�/ � $ (4)

Define the effective service rate obtained by a queue � as the
expectation of the instantaneous service rate, 	�
 " � �	�
 ������ .
For the modeling of delay and reward rate, 	�
 needs to be quan-
tified for all � 2 � .

We observe that when obtaining service, � itself is always
among the backlogged queues. While the status of � thus is
known, each of the other

��� � queues can be either back-
logged or not backlogged, resulting in � ��� � possible sets of
backlogged queues (all including � ). Let these sets be denoted4 
� ��4 
� ���	���	��4 
����� < .

The probability of a queue �%2 � being backlogged at arbi-
trary time � is equal to the utilization ����� 
�� � , which is the
ratio between the arriving work rate and the effective service
rate:

� 
 " � ��� 2546������� " ��
 �� 
	�
 � (5)

In the following analysis, we assume that backlogged time
intervals for the different queues are independent. This is

an approximation, since a traffic burst arriving at one stage
will spread to subsequent stages. The benefit of this approx-
imation is that the probability of a set of backlogged queues4 
� �%� 2 ��)���	���8� � �����  to occur (given that � is backlogged)
can be written as the product� ��46����� " 4 
�"! ��2 46������ " #

� &)(%$&('�) 
+* � � #$'&#" ' (%$& ��� � � $ � �
(6)

Combining equations (4), (5) and (6), the effective service
rate of stage � is the sum of instantaneous service rates for all
backlogged sets 4 
� , weighted by their probability of occurring.
This results in a nonlinear system of

�
equations in 	 . For all��2 � ,

	 
 " �
� ��� <!� B �

,- #
� &)(�$&('�) 
+* �!� �� �	��/.

. #$'&#" ' (%$& ��� � � $ �� $	 $ � . � 
#10 &)(%$& � 0�23 (7)

For general
�

, the closed-form solution to equation (7) is
non-trivial. For use in the optimization algorithm, we choose
to solve the equation numerically by fix-point iteration. After
guessing initial values of the components of 	 , the right hand
side of the equations is applied iteratively as an update rule until
convergence.

C. Constraints and response delay

Recall from section II-B that the scheduling weights are al-
ways positive. This constraint must be enforced during opti-
mization.

���54 � 0 � 2�� (8)

Further, it is possible to add QoS constraints. These can be
chosen to make the offered web service comply with guaran-
tees given to the customers, or reflect knowledge of customer
psychology. A commonly discussed QoS constraint for web
services is maximum response delay. However, it is also possi-
ble to define and implement other types of constraints, such as
delay fairness.

As our proposed optimization method assumes equilibrium,
a delay constraint that is well-suited for integration in the model
is a limit on the mean delay:

��	�5� �� �6�7�� 0��32 �;� (9)

where �� ������ is an upper QoS bound.
The analysis of service time distribution in GPS systems is

generally very difficult, as the instantaneous service rate 	 � �����
at any moment � depends on the contents of all queues in the
system [13]. In the following, we assume that the job size dis-
tribution � � ��� � is exponential, and make the approximation of
treating the effective service rates 	 as constant rates. This en-
ables us to model every request queue as an M/M/1 queue. The



mean number of requests in the queue or being serviced at any
stage � 2�� is thus given by

�� � " ���
� � � � � (10)

where � � is given by equation (5). An expression for the ex-
pected time from entering the queue until service is completed
is obtained from Little’s formula, and can be simplified using
equations (5) and (10).

�� � " �� �
� � "

�� �	 � � � � �� � (11)

The delay model may be extended to non-exponentially dis-
tributed service time. A flexible way of doing this which re-
quires small changes to the current model is to use a weighted
sum of exponential distributions.

D. Algorithm

Recall that the probability of a session not being interrupted
by the user before completion of the processing of a request
at stage � is represented by a patience function, � � ��� � , where
� is the server delay. We assume that this function is well-
modeled by an exponential function � �
��� � " �;����� ��� : � , where
� @ � ��� @ � is the probability that the session is not aborted in
case of zero delay at the server.

In case an exponential model of user patience is found un-
satisfactory, it is possible to use a weighted sum of exponential
functions, analogously to the above discussion of service time
distributions.

The expected survival probability �� � of a session at stage � is
computed by integrating the patience function, weighted by the
density function for the waiting time in an M/M/1 queue.

�� � "
�	�
� �;���
� ��� : , ��	�� � �� � � � � ��� � *�� :���� : ��� : / , � �

"
� ��� ��	 � � �� � � � �	���� �� �
����� � �!� � (12)

There is no risk of the numerator or denominator in equation
(12) becoming negative, as long as the workload arriving to the
initial stages of all sessions does not exceed the server rate,

!
� &#" ����� �� � � � � (13)

The reason for this is that the closer the left hand side is to the
right hand side, the lower the session survival probability, and
the lower the load resulting from sessions making a subsequent
request. Thus, the server is effectively self-regulating.

Denote by � $ � the probability of a session entering stage �
after leaving stage � , where ��� � 2�� .

� $ � " ��;� � $ � (14)

The flow of sessions into a stage � 2 � has two components.
One is � $ � , the fraction of session arrivals that commence at
this stage. The other is

# � &#" � $ � �!� , the sessions coming from

other stages. For the incoming and outgoing flows at a stage to
balance, the following equality must be satisfied for all � 2 � :

� $ "
!
� &#" �
$ � �!��� � $ � (15)

For fixed stage transition probabilities, this is a system of lin-
ear equations. In effect, the web server at equilibrium is mod-
eled as a Jackson network.

We now have all components required to compute  and �� as
functions of � and � for given system parameters. The follow-
ing pseudo algorithm, based on fix-point iteration, summarizes
the computations. Iteration indices � on the variables clarify
the update order.

EVALUATE SYSTEM ��� �����
Initialize �1�
� � arbitrarily
��� �
Repeat until convergence

Solve (7) for 	 � � �
Compute � ��� � � for all � 2 � using (5)
Compute �� � �
� � for all � 2 � using (12)
Compute � $ � � � � for all �+2 � using (14)
Solve (15), denoting the solution ��� �
� �
� � � ��� ����� � � � ������ �
� �!� ��� � �A�
� ����� � �
� � for
all �+2 �
��� ��� �

Compute  using (3)
Compute ��	� for all �+2 � using (11)

To avoid problems with numerical stability during conver-
gence, 	�� � �� � �!� in equation (12) is truncated so as not to be
less than a small, positive constant. Further, the forgetting fac-
tor � � �A�
� � � � depends on iteration time, and is tuned to
be small enough to avoid oscillation, yet large enough to ensure
convergence.

E. On-line operation

To optimize the weights of the scheduler, the parameters
describing the system and customer behavior need to be esti-
mated. These parameters are � , �� � , �� � , �"� , � , � and � . Based on
statistics collected during operation, estimates can be obtained
using linear regression. Once confident estimates are available,
EVALUATE SYSTEM �=� will yield  and �� as functions of � .

We chose the simplex search optimization method [15], as
implemented in [16]. Alternatively, state-of-the-art methods
for nonlinear optimization, such as Sequential Quadratic Pro-
gramming, could be used. Such methods normally need fewer
iterations to reach optimum, since they employ first and second
order derivatives of the objective function to guide the search.
However, this also make them less robust to noise than the sim-
plex method. The robustness of simplex search is a clear advan-
tage in our case, since a very large number of iterations may be
needed in EVALUATE SYSTEM �=� to secure sufficient accuracy
for finite-difference approximations of derivatives.



The weight positivity constraint (8) is enforced by truncating
negative ��� to a small, positive constant. In case the delay con-
straint (9) is employed, it is enforced by adding a penalty � to
the objective function:

� " ��� !
� &#" � ) �� :�� �����
	: * � ��� ���� � � ������ � � � (16)

Here, � ) �� : � � ���
	: * is an indicator function, which takes the
value of 1 if the constraint is violated and 0 otherwise. The
constant �!� scales the penalty such that every request subject
to certain delay should result in the same punishment, indepen-
dent of stage. The positive constant

�
makes sure that the mag-

nitude of the punishment matches that of the original objective
function.

Since the effective service rates 	 depend on the ratios be-
tween scheduling weights � rather than their absolute values,
the number of degrees of freedom of the server control problem
is
� � � . This is encoded by keeping one of the scheduling

weights ��� constant.
A possible mode of operation is to compute optimal � for

a range of � values, and storing such �
�1�
� � pairs in a lookup
table. By estimating � on-line and loading corresponding � into
the scheduler, load-dependent, near-optimal control is achieved.

Moreover, the optimal reward rates  corresponding to the
values of � may be stored in the lookup table. This makes it
possible to analyze the reward rate curve for optima. If the
curve has a maximum for a certain arrival rate, the maximum
reward rate � �6�7� allowed by the admission controller may be
set to this rate.

V. CASE STUDY

This section presents a case study that demonstrates our
methodology. The example is an electronic store, where users
can enter the store, browse the product catalog, add items to an
electronic shopping cart, remove items, and eventually check
out and pay.

A. Reward maximization in the e-store

Our model has four stages, shown in Table I. As discussed
in section III-B, each stage may comprise requests for a large
number of different web pages. In our example, all requests for
a page in the product catalog of the e-store are aggregated into
one stage, given that the shopping cart is empty. As it is likely
that the probability of checking out is higher if there are items
in the shopping cart, another stage encodes requests made with
a non-empty cart.

TABLE I
STAGES IN THE E-STORE EXAMPLE

Stage Description

1 Welcome
2 Browsing, empty cart
3 Browsing, articles in cart
4 Checkout

The parameters describing the model are listed in table II.
We assume that all users enter through the Welcome stage.
Unity reward is paid on checkout. The average amount of work
needed to process a request is identical at all stages, and the
session survival probabilities for zero delay are all � � � . The �
parameter of the patience function is set such that the probabil-
ity of session survival is halved for � " �� s at all stages.

TABLE II
PARAMETERS IN THE E-STORE EXAMPLE

Parameter Value� �
� � �� �
� � � � � � � � � � � � � � �
�

���
�
� � � � � � � � � � � �
� � � � ��� � � � � � �
� � � � � � � ��� � � �
� � � � � � � � � � � �

����
�

�� � � � � � � � � � � �)� � ��� � � �� ��� � � �� ��� � �
�� � � � � � � � � � � � � � � �� � � � � ��� � � � � ��� � � � � ��� � � � � ��� � �

B. E-store with delay constraints

This example is identical to the one above, with one excep-
tion: the mean delay QoS constraint (9) is enforced, with the
maximum mean delay set to 4 seconds at all stages.

VI. NUMERICAL RESULTS

In the numerical case study, the scheduling weight of stage 4
was fixed to ��� " � �� . To ensure positivity and avoid numeri-
cal problems, an additional constraint, � �3@ � � � ��� 0��32 � , was
added. The constant

�
in the penalty function (16) was set to

0.2. The e-store was modeled and optimized in Matlab, using
the optimization toolbox [16].

The optimizer was run for consecutive values of � , from left
to right in the interval � � � � � � � 7 with step � � � . The first run was
initialized by setting � � , � � and ��� to � � � ��� . As � was succes-
sively increased, the weights found optimal for one value of �
served as starting point for the next value of � .

To quantify the approximation errors of the equilibrium
model, we also evaluated performance using an event-driven
simulation of individual session arrivals, stage transitions and
departures. In this model, we had to specify the distribution of
the time between service completion and the next request for
service. We chose an exponential distribution having mean ��
s.

The simulations comprised two scheduling disciplines: GPS,
using the weights resulting from optimization, and first-come-
first-server (FCFS), which is the discipline commonly em-
ployed in web servers. In case nothing else is stated, the simu-
lation data presented below result from averaging the results of
ten simulation runs, made up of � �� new session arrivals each
(after simulation warm-up).



A. Performance evaluation

Figures 2, 3 and 4 display optimal � ,  and �� resulting from
unconstrained optimization, respectively. Figure 2 shows � � ,��� and � � (recall that � ��� � � � ) for session arrival rates� 2 � � � � � 7 . For lower � , the low load means that the weights
have very little effect on delay �� and reward rate  , since all the
effective service rates 	 
 are close to the total service rate � .

Figure 3 shows that the reward rate grows approximately lin-
early with � until the service rate of the web server begins to
limit  . The modeled GPS curve has an optimum at ��� � � � ,
whereas the simulated GPS curve (plotted with ����� confidence
interval) shows that the true optimum is located at ���	� � � , in-
dicating the maximum session arrival rate � ����� that should be
used by the admission controller to maximize the reward rate.

For � 2 � � � � 7 the discrepancy between the simulated and
modeled curves is non-negligible. The main reason is correla-
tion between per-stage backlogs. For � � � , the correlations are
low, because the probability is low that the bottleneck service
is occupied. For � 4 � , the high load means that the bottleneck
resource is almost constantly occupied. This also reduces the
correlation between backlogs. However, under medium load,
the stage transition probabilities � make it probable that cer-
tain groups of stages are simultaneously backlogged, making
the queueing delay longer than predicted at stages having low
scheduling weights.

For comparison, figure 3 also displays  under FCFS
scheduling. The performance advantage of GPS to FCFS is
twofold. First, the greatest reachable reward rate is about

� �
higher. Second, the performance degradation for session arrival
rates greater than optimum is significantly faster with FCFS
than with GPS.

The diagram in figure 4 shows simulated delays (plotted with
lines and points) paired with modeled delays (plotted with lines
only). Logarithmic scale is used for the delay axis to make all
curves clearly visible, although the delays at stages 2 through
4 are so short that they hardly influence the survival probabil-
ities. The diagram shows that the optimized controller favors
long delay at stage 1, in order to keep the delay low at all other
stages. This results in the termination of a large portion of ad-
mitted sessions. In effect, this policy implements session ad-
mission control, although the terminated sessions still receive
service at stage 1. The low delay at subsequent stages for ses-
sions that survive stage 1 make the probability high that these
sessions continue all the way to checkout, thus contributing to
the reward rate.

Figures 5, 6 and 7 display scheduling weights, reward rate
and delay, respectively, with the delay constraint (9) activated,
setting �� ����� " ��


. The plot styles are analogous to figures 2,
3 and 4. In figure 6, the reward curve resulting from simulation
using the weights from unconstrained optimization is plotted
for comparison.

Comparing to the solution of the unconstrained problem, the
weights � diverge at � " � � � , where �� reaches the constraint.
Consequently, the delay constraint is met, at the expense of
a lower reward rate. For example, comparing the curves for
constrained and unconstrained optimization in figure 6 shows
that constraining the delay decreases the reward rate by

� � for� " � � sessions/s.
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B. Sensitivity analysis

Since our proposed algorithms rely on estimating the param-
eters governing the dynamic behavior of the web server with
traffic, it is desirable to quantify the effects of errors in these
estimates. This section provides such analysis of our e-store
case study without delay constraints.

We analyzed the sensitivity of the reward rate  and per-stage
mean delay �� to small changes in the model parameters in Table
I (except

�
), using the equilibrium model. This was done by

estimating partial derivatives by finite differencing for varying
session arrival rate � . Figures 8 and 9 display the sensitivity
to variation of the stage transition probabilities � , which were
found to cause especially large variations in  and �� .

Unlike the sensitivity of �� , the sensitivity of  is bounded.
For session arrival rates � � �

, the sensitivity of �� is low with
respect to disturbances in any of the model parameters. How-
ever, as � grows, �� becomes more and more sensitive. This also
holds for other model parameters. For example, � ���� � � �)� (not
shown) decreases approximately linearly from zero to

� � � �
when � increases from

�
to ��� . Moreover, note that some com-

ponents of � �� � � �
change signs with changing � . This is yet

an indication of the complex dynamics of the web server.
A consequence of the high sensitivity of delay in case of high

session arrival rates is that an admission-controlled web server,
with � ����� set to maximize the reward rate, can offer QoS delay
bounds that are more robust to parameter estimation errors.

We also studied the sensitivity of the reward rate  to varia-
tions in the scheduling weights � . Figure 10 displays simulated
 values for � 2 � � � ��� 7 , and � � multiplied by a factor � ranging
from � � � � to ��� � . Since each data point results from a single
simulation run, the plot is not as smooth as the simulated GPS
curve in 3.

As can be seen in figure 2, the variation of � means that�!� , which is smaller than � � and greater than � � at optimum
(marked by a thick line in figure 10), will range from being
smaller than both � � and � � to being greater than both of them.
The graph shows a significant decrease in  for � � � � � ,
whereas the change of reward rate caused by � ��4 � � is very
small.

To summarize the sensitivity analysis, confident estimates of
the system parameters, especially those of the patience func-
tions, are important for making reliable predictions of delay and
reward rate. Unless the session arrival rate is very high, the sen-
sitivities are not extreme, and should be possible to accommo-
date. Regarding sensitivity to weight changes, the ordering of
the weights is more significant than exact values of the weights.
This may suggest strict priority queueing as a cheap alternative
to GPS. However, the possibility of tuning mean delays to meet
QoS constraints would be lost with strict priority queueing.

VII. CONCLUSION

This paper presented an architecture and algorithms for re-
quest scheduling and session-admission control in web servers.
The key idea is to break down sessions into stages with specific
service requirements and transition probabilities, and make the
web server aware of this structure. By controlling the resource
sharing between stages, an application-specific reward function
is maximized.
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We proposed a fix-point algorithm for computing reward rate
and per-stage delays for given system parameters, controls and
load. Using this algorithm, the weights of a scheduler emu-
lating generalized processor sharing (GPS) can be optimized
by means of simplex search. Before optimization, system pa-
rameters are estimated from measurements during client-server
interaction. Optionally, session-based admission control may
support the reward rate maximization, by preventing the ses-
sion arrival rate from exceeding the value for which the reward
rate reaches maximum.

In a numerical case study, a fictitious e-store with four stages
was modeled. Our optimized GPS scheduler reached up to� � higher reward rate than a server using the first-come-first-
server discipline. GPS was also shown to yield lower perfor-
mance degradation for session arrival rates above the maxim-
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imum point. Consequently, scheduling of HTTP requests has
larger impact on the reward rate if a web server is allowed to be
overloaded than if it is not.

Further, we showed how to include bounds on the mean delay
per stage as optimization constraints. The integration of delay
bounds was also demonstrated numerically. With delay con-
straints activated, the reward rate decreased compared to the
unconstrained case.

Sensitivity analysis of the e-store example showed that de-
lay is more sensitive to modeling errors than is the reward rate.
The sensitivity of delay increases with increasing load. We also
found that the ordering of scheduling weights has much larger
impact on the reward rate than the exact values of the weights,
suggesting strict priority queueing as cheap alternative to GPS
scheduling; however, without the possibility of tuning mean de-
lays to meet QoS constraints.
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