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Abstract—We investigate a scheduling problem in a TDMA en-
vironment where packets may be fragmented. Our model of the
problem is derived from a scheduling problem present in data
over CATV networks, where a slotted TDMA channel is used to
carry both real-time and best-effort traffic. Packets of real-time
flows have high priority and are allocated in fixed, periodically lo-
cated slots. Best-effort packets have lower priority and must there-
fore use the remaining slots. The scheduling problem tackles the
assignment of variable size best-effort packets into the free slots
which are left between successive allocation of real-time packets.
One of the capabilities of the system is the ability to break a packet
into several fragments. But, when a packet is fragmented, extra
bits are added to the original packet to enable the reassembly of
all the fragments.

We transform the scheduling problem into a variant of bin
packing where items may be fragmented. When an item is frag-
mented overhead units are added to the size of every fragment.
The overhead associated with fragmentation renders the optimiza-
tion problem NP-hard; therefore, an approximation algorithm is
needed. We define a version of the well-known Next-Fit algorithm,
capable of fragmenting items, and investigate its performance. We
present both worst case and average case results and compare
them to the case where fragmentation is not allowed.

I. INTRODUCTION

We consider a scheduling problem that arises when a TDMA
channel is used to carry both real-time and best-effort traffic.
Our model of the problem is derived from a scheduling prob-
lem present in data over CATV (Community Antenna Televi-
sion) networks. In particular we refer to the Data-Over-Cable
Service Interface Specification (DOCSIS) standard [7] which is
the leading standard for data over CATV networks. CATV net-
works are characterized by a tree-and-branch topology. The Ca-
ble Modem Termination System (CMTS), at the root of the tree,
controls all traffic in the network. Subscribers of data services
use a Cable Modem (CM) to connect to the CMTS. The avail-
able bandwidth is divided into channels. Downstream channels
(from the CMTS to the CMs) are used by the CMTS. Upstream
channels (from the CMs to the CMTS) are shared by all sub-
scribers connected to the same fiber node (typically 500 to 2000
subscribers). To share the upstream channel a TDMA MAC
protocol with dynamic bandwidth allocation is implemented.
As the downstream is used only by the CMTS no MAC proto-
col is needed.

DOCSIS based networks transfer packets containing Internet
Protocol (IP) datagrams between the CMTS and the CMs. The
CMTS is responsible for the scheduling of all transmissions in
the upstream. Scheduling is done by dividing the upstream, in
time, into a sequence of numbered mini-slots. A mini-slot is
the unit of granularity for upstream transmission; transmitting
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a packet may require one or more mini-slots. From time to
time, the CMTS publishes a MAP in which it allocates mini-
slots to the different CMs. The allocation of each mini-slot must
appear in one of the MAPs. The scheduling problem is that of
allocating the mini-slots to be published in the MAP, or in other
words, how to order the packet transmission in the best possible
way.

The CMTS and a CM establish a service flow between them.
Service flows describe the type of connection between the
CMTS and the CM; roughly, they may be divided into real-time
and best-effort service flows (see [7] for exact details). Real-
time flows, such as Constant Bit Rate (CBR), are used to sup-
port applications with timing demands, such as Voice over IP
(\VolP). Best-effort flows are used for applications without tim-
ing demands such as web browsing and FTP. The CMTS must
consider two kinds of packet allocations

1) Real-time packets - These packets must be scheduled so
as to ensure delivering the guaranteed timing demands of
the service flow. Real-time packets are therefore sched-
uled in fixed, periodically located mini-slots.

2) Best-effort packets - These packets have no timing de-
mands and can therefore use any of the mini-slots. Best-
effort packets appear in different sizes.

The CMTS therefore performs the allocation in two stages.
In the first stage it schedules, or allocates, all real-time packets.
In the second stage best-effort packets are scheduled in the gaps
which are left between successive real-time packets. Depend-
ing on the configuration of active real-time service flows, these
gaps may be of fixed or variable size. One of the capabilities
of the system is the ability to break a packet into smaller pieces
called fragments. When a packet is fragmented, i.e., transmit-
ted over non successive mini-slots, extra bits are added to the
original packet to enable the reassembly of all the fragments at
the CMTS. In CATV networks one or two mini-slots are typi-
cally added to every fragment but the actual number of overhead
mini-slots may be even higher.

We model the scheduling problem as a bin packing problem.
The relation to the bin packing problem should be clear. The
items are the best-effort packets that should be scheduled, each
of which may require a different number of mini-slots. The bins
are defined by the gaps between every two successive real-time
packets in the MAP. The goal is to use the available mini-slots
in the MAP in the best way.

Because of its applicability to a large number of applica-
tions and because of its theoretical interest bin packing has been
widely researched and investigated (see, e.g., [9], [13] and [2]
for a comprehensive survey). In the classical one-dimensional
bin packing problem, the goal is to pack a list of items into a
minimum number of unit capacity bins. Since the problem, as
many of its derivatives, is NP-hard [10] many approximation



algorithms have been developed for it (see, e.g., [14], [16] and
[1] for a survey). To analyze the scheduling problem we intro-
duce a new variant of bin packing which we call Bin Packing
with Item Fragmentation (BP-IF). We transform the schedul-
ing problem into the problem of bin packing with item frag-
mentation and show that the two are strongly related.

The cost associated with fragmentation renders the bin pack-
ing problem nontrivial. In fact, for non zero cost BP-IF is NP-
hard (see [19], [22] for a formal proof). In the scheduling prob-
lem, where items correspond to packets, the cost is due to the
extra overhead bits that are added to each fragment for reassem-
bly purposes. Other fragmentation costs can be those resulting
from increase in processing time or reassembly delay. Analysis
of the case where fragmentation does not increase item sizes
has been presented in [22].

We present an analysis of the Next-Fit (NF) algorithm, which
is perhaps the simplest algorithm for bin packing. The algo-
rithm keeps only one open bin and packs items according to
their order, into the open bin. When an item does not fit in
the open bin, the bin is closed and a new bin is opened. The
NF algorithm is very simple, can be implemented to run in lin-
ear time, and requires only one open bin (bounded space). It
is therefore interesting to investigate the performance of such
an algorithm before considering other, more complicated, algo-
rithms. We define a version of NF which is capable of fragment-
ing items, and investigate its performance. We present both
worst case and average case results and compare them to the
case where fragmentation is not allowed. Our worst case analy-
sis covers both uniform and variable size bins while the average
case analysis is restricted to the case of uniform size bins.

Our work contains several contributions. We introduce the
variant of bin packing with item fragmentation and relate it to
scheduling problems where packets may be fragmented. Our
analysis of the scheduling algorithm contributes new results to
the literature of bin packing. Finally, we developed a new tech-
nique for average case analysis which has some important ad-
vantages over existing techniques.

The remainder of the paper is organized as follows. In Sec-
tion 1l we formally define the problem. Section Il presents
worst case analysis of the scheduling algorithm. Section 1V is
devoted to average case analysis.

Il. PROBLEM STATEMENT AND DEFINITIONS

In this section we formally define the problem of bin packing
with item fragmentation and show its relation to the schedul-
ing problem. We distinguish between the cases of uniform and
variable size bins.

A. BP-IF with Uniform Size Bins

For uniform size bins we define bin packing with item frag-
mentation similar to the classical bin packing problem. In the
classical bin packing problem, we are given a list of items
L = (a1,as,...,ay), each with a size s(a;) € (0,1] and are
asked to pack them into a minimum number of unit capacity
bins. To handle fragmentation, we use a discrete version of the
problem and add a fragmentation cost function that adds over-
head units to each fragment. We proceed to formally define the
problem.

BP-IF with Uniform Size Bins: We are given a list of n
items L = (ay,as, ..., a,), each with a size s(a;) € Z*. The
items must be packed into a minimum number of bins, which
are all the size of U units. When packing a fragment of an item,
r units of overhead are added to the size of every fragment.

The analysis of bin packing algorithms is traditionally di-
vided into worst case analysis and average case analysis. In
worst case analysis we are usually interested in the asymp-
totic worst case performance ratio. For a given list of items,
L and algorithm A, let A(L) be the number of bins used
when algorithm A is applied to list L, let OPT (L) denote
the optimum number of bins for a packing of L, and let
R4(L) = A(L)/OPT(L). The asymptotic worst case perfor-
mance ratio R is defined to be

RY = inf{r >1: forsome N >0, (1)

R4(L) <r forall Lwith OPT(L) > N}

A different approach for estimating the performance of an al-
gorithm, is an average case analysis. In this case we assume the
items are taken from a given distribution H and we try to esti-
mate the performance ratio of an algorithm, when it is applied to
a list taken from that distribution. For a given algorithm A and
a list of n items L,,, generated according to distribution H, the
asymptotic expected performanceratio is defined as follows:

A(Ln)

R (H) = lim E[Ra(L,)] = lim E {OTM

n—oo

} @

Schedule Efficiency: To evaluate the performance of a
scheduling algorithm A, we compare the channel utilization
achieved by A, to that of the best possible schedule. Let s(L)
denote the total sum of all items in L, the channel utilization
of algorithm A is C4(L) = %. The worst case schedule
efficiency, which we denote by 74, is the inverse of the worst
case performance ratio of A

s(L)/(A(L) - U)
s(L)/(OPT(L)-U)
(R¥)™

na(L) = = (Ra(L))"" (3

A=

The expected schedule efficiency is the inverse of the expected
performance ratio of A, 7% = (R, ).

B. BP-IF with Variable Size Bins

In the case of variable size bins we assume there is a fixed
number of m bins. The goal is to pack items of maximum total
size into the bins or, in other words, to maximize the bin utiliza-
tion. The problem is similar to the multiple knapsack problem
(MKP) (see e.g., [20] and [23] for a survey). In MKP we are
given m bins (knapsacks) of variable sizes and a list of items
L. Each item a; € L has a size s(a;) and a profit p(a;). The
objective is to pack items of maximum profit into the bins. The
problem we define here is a special case of MKP (known as
subset sum) where the profit assigned to each item equals its
size, i.e., p(a;) = s(a;) Vi. A similar problem to ours but when
the goal is to maximize the number of packed items has been
presented in [18] and extended in [8]. We proceed to formally
define the problem



BP-IF with Variable Size Bins: We are given a set B of
m bins and a list L of n items. Each item a; € L has a size
s(a;) € Z* and each bin B; € B has size s(B;) € Z*. The
goal is to maximize the total sum of items packed in B. When
packing a fragment of an item r units of overhead are added to
the size of every fragment.

We denote by c(A,L) the sum of items that algo-
rithm A packs form list L and by s(B) the total size
of all m bins. For the uniformity of definitions we let
R4(L) = e¢(OPT,L)/c(A, L) and use (1) as the definition of
the asymptotic worst case performance ratio. The channel uti-
lization of algorithm A is C4(L) = C(S’(“éﬁ); hence, as for uni-
form size bins, the schedule efficiency is the inverse of the per-
formance ratio, i.e., n%° = (Rff)_l.

C. The Scheduling Algorithm

In this paper we analyze the performance of the Next-Fit al-
gorithm. We denote by NF the version of NF capable of frag-
menting items and define the NF; algorithm similar to NF.

Algorithm NF; - In each stage there is only one open bin.
The items are packed, according to their order in the list L, into
the open bin. When an item does not fit in the open bin it is
fragmented into two parts. The first part fills the open bin and
the bin is closed. The second part is packed into a new bin
which becomes the open bin.

We point out the following properties of the algorithm

« Items of size 2r or less are not fragmented since the size
of one of the fragments would be at least the original size
of the item.

o If a bin of size U contains U — 2r or more units and the
next item cannot fit in the bin, the bin is closed and the
item is packed in a new bin (without fragmentation).

In the reminder of this paper we concentrate on the BP-IF
problem. We calculate both the worst case and the expected
asymptotic performance ratio of the NF; algorithm and com-
pare it to known results about the NF algorithm. The schedule
efficiency of the algorithms is easily derived from the perfor-
mance ratio using (3).

I1l. WORST CASE ANALYSIS

In this section we analyze the worst case performance of the
NF, algorithm. To evaluate the benefits of fragmentation we
compare the performance of NF; to that of NF. For classical
bin packing the NF algorithm is the least efficient among all
standard bin packing algorithms. The asymptotic worst case
performance ratio of the algorithm is

2U
= ——, > 2.
RYr U1 forevery U > 2 4)

The above ratio is obtained for example by the list
L={1,U0,10,..,1,U}.

A. Uniform size bins

Theorem 1: The asymptotic worst case performance ra-
tio of algorithm NF; for BP-IF with uniform size bins is
Rp, = gos; foreveryr > 0and U > 4r + 2.

Proof: We first prove the upper bound and then provide an
example to establish the lower bound.

Claim 1.1 Ry, < 7%=, forevery U > 2r.

Proof: The NF; afgorithm may pack at most two fragments
in each bin (one fragment when the bin is opened and another
when the bin is closed). There are therefore at most 2 overhead
units in a bin which means that the number of bins used when
the algorithm is applied to list L is at most [s(L)/(U — 2r)].
The optimal packing of L requires at least [s(L)/U7 bins and
the claim follows. B

Claim I1.2: Ry, > o5, forevery U > 4r + 2.

Proof: We present an example that proves the claim. Let us
first consider the case where the bin size U is an even number.
As a worst case example we choose the following list L: the
first item is of size U/2, the next & — 27 items are of size 1;
the rest of the list repeats this pattern kU times. The optimal
packing avoids fragmentations by packing bins with two items
of size U/2, or U items of size 1. The total number of bins used
is OPT(L) = (U — 2r)k. Algorithm NF; packs one item of
size U/2 and % — 2r items of size 1 in each bin, but since the
next item is of size U/2 the bin is then closed. NF therefore
requires Uk bins to pack L.

A worst case example for the case where U is an odd num-
ber is similar. The first item in L is of size (U — 1)/2, the
next % — 2r items are of size 1. The rest of the list re-
peats this pattern kU times. It is easy to verify that this list
produces the same ratio. It follows from the examples that

NF;(L) U
R, 2 OP;“(L) > 5 U>4r+2. 0

The combination of the above claims proves the theorem. B

We point out that Theorem 1 holds even if items may be
larger than the bin size; however, in this case the comparison
to the NF algorithm is meaningless. We also note that when the
bin size is small, i.e., U < 4r 42 Theorem 1 does not hold. For
example, whenr = 1 we show in [21] thatwhen 3 < U < 5the
worst case asymptotic performance ratio of NF is R, = 3,

There is a considerable difference between the worst case
performance ratios of NF and NF ;. Since both algorithms work
in a similar way, we conclude that the improved performance
ratio of NF; is due to its ability to fragment items. Note that
the worst case performance ratio of any algorithm that adopts
the simple rule of filling a bin whenever an item is fragmented,
cannot be worse than that of NF ;.

B. Variable Size Bins

We now consider the case of variable size bins. We denote
byU= L1 Z;”Zl s(Bj) the average bin size (which is not nec-
essarily an integer).

Theorem 2: The asymptotic worst case performance ra-
tio of algorithm NF; for BP-IF with variable size bins is

Ry, = =55, foreveryr > 0and U > 4r.

U-2r'

Proof: We first prove an upper bound. Note that when
packing m bins NF; performs at most m fragmentations,
since in each fragmentation one of the bins is filled. Each
fragmentation may add at most 2r overhead units, hence
¢(NF¢, L) > Z;nzl s(B;j) —2rm =m(U —2r). The best



an optimal packing can do is to fill the bins without fragmen-
tations, ¢(OPT, L) < Y- s(B;) = mU. It follows that for
every list L, Ry, (L) < Ufy, U > 2r.

To prove the lower bound for U > 4r we choose a list with
m items of size U — 2r followed by m items of size 2r. NF;
packs only the first m items while an optimal packing packs all

the items. The ratio in this example is R4 (L) = =15

Let us consider the implications of Theorem 2 on the
scheduling problem. It is clear that the performance of the NF ¢
algorithm is determined by the average bin size. Bin sizes are
determined by the positions of real-time packets. In order to
increase the average bin size an algorithm for scheduling real-
time packets should try to create as fewer bins as possible. To
do so the algorithm must try to group real-time packets together
and schedule them over consecutive mini-slots.

IV. AVERAGE CASE ANALYSIS

The worst case analysis presented above provides an upper
bound on the performance ratio of the NF; algorithm. How-
ever, from a practical point of view it may be too pessimistic,
since the worst case may rarely occur. To learn about the typi-
cal behavior of the algorithm we present an average case anal-
ysis. Since the results of an average case analysis depend on
the item-size distribution, it is desirable to be able to calculate
results for any given distribution. We therefore consider some
general item-size distribution assuming only that the items are
independent, identically distributed (i.i.d).

In this section we consider only the case of uniform size bins.
To allow a comparison between NF; with NF we assume that
items are not larger than the bin size. Let us define the problem
in a formal way.

Average case analysis of BP-IF with uniform size bins:
We are give a list of n items L = (ay,as,...,a,), €ach in-
dependently chosen from the finite set s(a;) € {1,2,...,U}.
The probability to choose an item of size i is h;, i.e., for all
t: h; = Pr(s(a;) = ). The goal is to pack the items into
a minimum number of bins of equal size U. When packing a
fragment of an item,  units of overhead are added to the size
of every fragment.

The first average case analysis of the NF algorithm was done
by Coffman, So, Hofri and Yao [5] who showed that the asymp-
totic expected performance ratio for continuous uniform distri-
bution is Ry = % For discrete uniform distribution, in the
range s(at) € {1,2,...,U}, it has been shown in [3] that the NF
algorithm has the following asymptotic expected performance
ratio:
22U + 1)
3U+1)

Note that the result for the continuous uniform distribution is
reached when U — oc.

The above mentioned results were achieved by using differ-
ent techniques, all of which are fairly complicated (see, for
example [5], [12] and [15]). We present here a much easier
method of calculating the asymptotic expected performance ra-
tio. We first use this method to repeat the analysis of the NF
algorithm. We next apply it to the new problem of bin packing

—-— 00
Ryp =

Q)

with item fragmentation, to find the expected performance ratio
of the NF algorithm.

A. Average Case Analysis of the NF Algorithm

We use a Markov chain to describe the packing of the algo-
rithm. The state of the algorithm, which we denote by Ny, is
the content of the open bin after ¢ items were packed. Since
the bin size is U and there are n items to pack, the possible
states of the algorithmare 1 < N; < U, 1 <t < n. The
probability distribution for N., is completely determined by
the value of IV, which renders the process a Markov chain. We
consider only the cases where the Markov chain describing the
algorithm is ergodic. Note that this is very reasonable since the
chain is finite and for most item size distributions it would also
be irreducible and acyclic, hence ergodic. If the chain is not
ergodic, it is necessary to apply the analysis we present on the
irreducible part of the chain which is accessible from the initial
state (empty bin).

Assume N;_; = j and the algorithm now packs item a;.
If the open bin cannot contain the item, i.e., j + s(a:) > U,
the item is packed in a new bin. The previous open bin con-
tains U — j unused units which we call overhead units. We say
that the overhead units "increased” the size of a; and define its
combined-size to be the actual size of the item, plus the over-
head units it created. For example, say the algorithm is in state
N; = 2 and the next item is of size U. The overhead in this
case is U — 2 units and we say the combined size of the item is
U+U-2.

Denote by oh, the overhead added to the size of item a;. For
an algorithm A and a list L,, of n items, we define the expected
average combined size of all items to be

%Z(s(at) + ohy)

t=1

I,(A)=E (6)

We define the expected asymptotic average combined size of
all items as
I,(A) = lim I7 (A) (7)
n— o0

We can express the asymptotic expected number of bins re-
quired by A as

lim F

n—oo

(8)

W?Fmﬁ

We now use a property of the optimal packing that ensures
that for any item size distribution the tails of the distribution
of OPT(L,,) decline rapidly enough with n [24], so that as
n — oo, E[A(L,)/OPT(L,)] and E[A(L,)]/E[OPT(L,)]
converge to the same limit [6]. Therefore the asymptotic ex-
pected performance ratio is given by

T Am) ] ElAL)
M-—Mﬂbw@ﬂﬁ%aﬁmm
IR yuress % E[OPT(Ln)] B Izw(OPT)

To find the asymptotic expected performance ratio of the NF
algorithm, we must calculate both 7,,,(OPT) and I,,(NF).



Since bin packing is NP-hard, finding I,,(OPT) for certain
item size distributions may require exponential time in n. For-
tunately, we do know that for several important distributions,
including the uniform distribution, the overhead of the optimal
packing can be neglected [2]. For such distributions we have

Zzh_h

In cases where I,,,(OPT) is not known we can still find the
channel utilization of the algorithm by replacing 1,,(OPT)
with 7, i.e., the average item size of the given distribution.

To find I, (N F') we use the Markov chain describing the al-
gorithm. Denote by P the transition matrix of the Markov chain
and by II = (II4, ..., Iy) the equilibrium probability vector
satisfying II = IIP. Assume NF packs a long list of n items;
denote by n; the number of visits in state j during the packing.
Since we consider ergodic chains, we have the following prop-
erty: Pr (lim,,_,o == = II;) = 1, which is usually written as
lim,, o 52 = II;, a.s. (almost surely).

We now denote by n; ; the number of items of size ¢ packed
when the algorithm is in state j. The probability for the next
item in the list to be of size 4, h;, is unrelated to the state of the
algorithm. Therefore we can use the Law of large numbers to
establish the following property of nj;:

I1,,(OPT) (10)

. IR}
lim —2% = hm —-h; =1I; - hy, a.s.
n—oo M n—oo N

The overhead added to each item is related to both the state
of the algorithm and the size of the item. We denote by oh;(j)
the overhead added to an item of size i which is packed when
the algorithm is in state j. We calculate the average combined
size of the items in the following way:

I.(NF) = lim I" (NF)
n—roo

1 U U
o S nji - (i + ohi(3))

j=11i=1

(11)

(12)

lim E

n—oo

u u i
= B |Y_ D lim =2 (i+ohi(j)

j=11i=1

Substituting (11) we get

ZZH By -

j=11i=1
To simplify (13) we use the following definitions:
E = Z?:l i- hz

OH(j) = XU, hi - ohi(5)
OH=Y " 1, -OH(j)

I,(NF) (i + oh;(j)) (13)

average size of items
average overhead in state |

average overhead size
(14
Equation (13) now becomes

U U U U
Io(NF) = > T;-Y i-hi+ Y T - hy-ohi(j)
j=1 i=1 j=1 i=1
p— U p—
= h+ Y I;-OH(j)=h+OH (15)
j=1

The expression in (15) is very intuitive; the asymptotic aver-
age combined size of the items is made of the average size of
the items plus the average size of the overhead. To calculate the
expected performance ratio we must find two components

1) The equilibrium probabilities of the Markov chain, II.

We find II by constructing the transition matrix P and
calculating the equilibrium probability vector satisfying
II=T1IP.

2) The overhead components oh; (7). This is easily obtained

from the packing rules of the algorithm.

Our technique of average case analysis has several advan-
tages; it is suitable for analyzing any (i.i.d) item size distribu-
tion, both discrete and continuous, it can be applied to different
algorithms and adopted to different variants of bin packing, and
calculating the expected performance ratio is relatively easy.
These properties are important since in most real-world appli-
cations of bin packing the items are drawn from a finite set,
which is rarely uniform.

In the next subsection we calculate specific results for the
case of discrete uniform distribution.

1) Discrete Uniform Distribution: Discrete uniform distri-
bution means that »; = %, Vi. It is easy to see that in this case
the Markov chain is ergodic. An important characteristic of the
discrete uniform distribution is that the overhead of the optimal
packing is negligible. To state it formally, let L,, be a list of
n items drawn from a discrete uniform distribution H and let
s(Ly) be the total size of all items in L,,. The expected wasted
space of the optimal packing has the following property [4]:

Wopr (H) = 5(Lyp)] = O (Vn)
From the above result we conclude that

U-OPT(L,)| _ 1
s(Ln) B
We therefore neglect the overhead of the optimal packing in

calculating the asymptotic expected performance ratio. Calcu-
lating I, (OPT) is now trivial

E[U-OPT (L) —

lim E{

n—roo

“pity 09

We use (15) to find the average combined size of the items.
We first find the equilibrium probabilities of the Markov chain.
Let P be the U x U transition matrix describing the chain and let
IT = (14, ..., IIy) be the equilibrium probability vector satisfy-
ing IT = IIP. There is a symmetry in the lines of the transition
matrix P, in a sense that line j and line U — j are identical. For
i < %] we have

0 1<k<j

Py =

1
— {1 j<k<U-—j
) U -7 —_ .7

1<i<|5] an
2 U-j<k<U

Thelastlineis Py, = &, 1<k <U



The simple structure of the matrix P enables an easy solution
to the set of equations IT = II P.

2j

M = ——"—
TTUW A+

(18)

Next we compute the overhead component O H (j). It is easy
to verify that for the NF algorithm the average overhead in state
N=jis
i U—j _jU—j)

, : U U
i=U—j+1
(19)

We now use (18) and (19) to find the average combined size
of the items

U
= Zhl - Oh,(j) =
i=1

U
I,(NF) = U+1 ZH -OH(j U;H
U .
JU —j)
20
+ ;UU+1 U (20)
_U+1 2/2(U—-j) 20+1
= 3 +;U2(U+1)_ 3

We use I,,(NF) and I,,(OPT) to obtain the asymptotic
expected performance ratio

I (NF) — (2U+1)/3
I,(OPT) (U+1)/2

The result for the asymptotic expected performance ratio is in
accordance with known results (see [3]). The asymptotic worst
case performance ratio is given in (4). We compare the two, for
several values of U, in Table 1.

22U + 1)
3(U+1)

Ryp = (21)

TABLEI
EXPECTED AND WORST CASE ASYMPTOTIC PERFORMANCE RATIO OF THE
NF ALGORITHM.

Bin Size | Worst case ratio | Average case ratio
U RyF RNF
3 1.5 1.166...
4 1.6 1.2
6 1.714... 1.238...
10 1.818... 1.272...
100 1.980... 1.326...
o 2 1.333...

In both cases the performance ratio increases with the bin
size. There is a dramatic difference between the worst case per-
formance ratio and the expected performance ratio. The average
case results are therefore not as bad as the worst case analysis
indicates.

B. Average Case Analysis of NF; for r =1

We now use the same method we used for analyzing algo-
rithm NF, to analyze the NF; algorithm. In this section we
consider the case of » = 1, i.e., one overhead unit is added to
the size of each fragment. We assume that the items are taken
from a discrete uniform distribution, that is, h; = %, Vi. Note
that the overhead this time is due to fragmentation or an unused
free space (if the content of a closed bin is U — 1).

The first stage in our analysis of NF¢, is to find the equi-
librium probabilities of the Markov chain. Let us describe the
elements of the transition matrix P

0 k<2, k<j<U-k
PJ,,@:%- 2 je{k—2,k—1} 3<k (22)
1 else
The set of equations defined by IT =TT P is
I, = 1H (23)
1= il
1
I, = E(Hl + y_1 +1ly) (24)
1
II; = ﬁ(l +1IL 1+ 10 5), 3<j<U (25)

Note that the solution to (25) (if it were the only equation)
is II; = /. Unlike the case of NF, the solution to the set of
equations (23)-(25) is not simple. We therefore defer the calcu-
lation of a closed form solution to subsection IV-B.1 and pro-
ceed to calculate O H () (the average overhead in state N = j).
Note that when an item is fragmented over two bins, 2 units of
overhead are added to it. In state N = U — 1 all items of size
2 or more are packed in the next bin, so only 1 unit of over-
head is added to them. The average overhead in state N = j is
therefore

2j 1<j<U-2

OH(j) = U-1 j=U-1 (26)

S =

0 j=U

We can now express the average combined size of the items

U
U+1
I, (NFp) = + ZH -OH(j (27)
U-—-2 .
U+1 U-1 2j
I | P
St U1+JZ:; i g

Similar to (16), the overhead of the optimal packing is negli-
gible, I,,(OPT) = YEL,
The asymptotic expected performance ratio is therefore

U—-2 .

— 2 [U-1 2j

Ryp, =14 —— | —— M1+ > 15 | (28)
1 U+1\ U =U



At this point we do not have a closed form solution to the
equilibrium probabilities and therefore we cannot present the
expected performance ratio in closed form. It is easy, however,
to find a numerical solution for every value of U. In Table 2
we present the expected asymptotic performance ratio and the
worst case ratio, for several values of U.

TABLEII
EXPECTED AND WORST CASE ASYMPTOTIC PERFORMANCE RATIO OF THE
NF ; ALGORITHM WITHr = 1.

Bin Size | Worst case ratio | Average case ratio
U Rir, Ry,
3 1.5 1.1666...
4 1.5 1.1961...
5 1.5 1.2097...
10 1.25 1.1676...
20 1.1111... 1.0938...
100 1.0204... 1.0198...
o0 1 1

Recall that, according to Theorem 1, the worst case perfor-
mance ratio of NF; forr = 1is R, = 2. Figures 1 and 2
present the asymptotic expected performance ratio of the NF ¢
and NF algorithms together with the worst case performance
ratio of NF;. We observe that the difference between the worst
case and the average case for NF is not as significant as in NF,
that is, the expected performance ratio of the NF; algorithm is
not far from its worst case performance ratio. This is obvious
for large values of U since the worst case ratio converges to
one, but it also indicates that even under a uniform distribution
the NF; algorithm produces almost the worst possible pack-
ing. An interesting question, which we leave open, is whether
other, more efficient, algorithms can produce a better packing.
In this respect we note that in the case where fragmentation is
not allowed, there is a big difference between the performance
of NF and the performance of other online algorithms, such as
First-Fit and Best-Fit, for which the asymptotic expected per-
formance ratio, for any value of U, is Ry = Rpp = 1 [2].

1) Calculating the Expected Performance Ratio: In this sec-
tion we derive a closed form solution of the expected perfor-
mance ratio. Since this closed form solution is rather complex,
we also provide an approximation of the expected performance
ratio. The approximation is much easier to use and the approx-
imation error, for all but small values of U, is insignificant.

We substitute N = E[N] = Y°0_, j - I; in (28), to express
Ry r, in the following way:

_ 2 (2 U-1
RfVOFf:1+U—+1<EN—THU1—2HU> (29)

To calculate the value of N we use a generating function

U
M(z) =) 0, 27 (30)
j=1
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Fig. 1. Expected and worst case performance ratio of NF and NF ; with r = 1.
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Fig. 2. Expected and worst case performance ratio of NF and NF ; with r = 1,
for values of U < 15.

We now use the equilibrium equations (23) - (25) to get

U
1 )
H(Z) = H12+H222 +Zﬁ (].-l—Hj,l -l-Hj,Q)ZJ

7=3

1 U+1
= —Ilypz+— <HU1 + %HU> 22

U
1 )
+ ) =+ + 10 ) 2 (31)

Arranging the above expression we get



Iy U2 4 (HU + HU_1) ZUH
224+2-U
(HU + HUfl)Z-2 + Iy z + 25]:3 2J
224+2-U

(z) = (32)

To find N we calculate the derivative of the generating func-
tionatz =1
U (U + ].) —4UTly -2 (U - 1) Hu—1
2(U -2)

(33)
Substituting (33) in (29) we get an expression for the asymp-
totic expected performance ratio

2 /2 U-1

2 (AU lg,  on

+U+1<U T U U)
U AUy + 20 (U — DTy,

— _ (34)
U2 U+ DU -2)

=00
RNFf =

We can now express E}’\,OFf as a function of II;_; and Il

—o00 U U1y + 2(U — l)HU_1

By, =53~ O =2 (35)

Observe that the first part of the expression is equivalent to
the worst case performance ratio. The second part constitutes
the difference between the worst case and the average case.

To find the expected performance ratio we must now calcu-
late the probabilities Iy, Ty 1. We do so by exploring the
roots of the generating function given in (32). Note that the de-
nominator is a square polynomial with two roots. Since the gen-
erating function is analytic for any value of z, the roots of the
denominator are necessarily roots of the numerator also. This
information provides two equations from which ITy; and Iy
can be found. Denote by z; and z5 the roots of the denominator

1 / 1 1 / 1
Zl——§+ U+Z’ 22——5— U+Z

Substituting z; in the numerator we get

Oy 20"+ (Mp +Ty_) (™ = 27)

U
— HUzl—Zz{ =0
Jj=3

(36)

We get the same equation if we substitute z, in the numerator.
Using the two equations it is now a straightforward algebraic
exercise to find IIy; and Iy _q.

(37)
{ VAU +1((-U)7~" +1)
VAT +1 ((—U)U - 1) + (V=20 (U +1)
272U + 25(1 = U)) + 2772 }
VAT +1 ((—U)U - 1) + (V=) (U +1)

My, = G0 (38)
{ (22 — 1) (Zf]+1 - zf) (zg — 1)
VAT +1 ((—U)U - 1) + (V= V) (U +1)

_ (z21=1) (25 = 23) (= - 1) }
VAT +1 ((—U)U - 1) + (V=) U+ 1)

To find the expected performance ratio we substitute (37) and
(38) in (35).

The expression we obtained for the expected performance ra-
tio enables a calculation for any value of U but does not provide
too much insight. To get a better understanding we note that
(25) gives us a very good approximation, IIy = Ily_; = ﬁ
The approximation is getting better the larger U is. Using the
approximation we get

U B 4UTly + 2(U - 1)HU71

B, U-2 (U+1)(U-2)
U AU +2U0-1)g5
T U-2 @ (U+nHU-2
U 6U — 2

- U-2 (U+1)(U-2)2 (39)

Comparing the exact value of the expected asymptotic per-

formance ratio to the approximation, we find that for U = 7 the

difference is about 0.3%, for U = 10 the difference is less than

0.003% and for larger values of U the approximation error is
insignificant.

C. Average Case Analysis of NFy forr > 2

In this section we explain how to extend the analysis we pre-
sented in the previous subsection to the the case where r» > 2
units of overhead are added to the size of every fragment. The
analysis is very similar to the case where r = 1.
The first stage of our analysis is to find the equilibrium prob-
abilities of the Markov chain. To construct the transition matrix
P we assume the state is N;_; = j and the next item is of size
i, 1 <14 < U. There are three possibilities
1) If j + 4 < U the item fits in the bin and the next state is
2) If j+i>Uandj < U — 2r the item does not fit in the
bin and is therefore fragmented over two bins. The next
stateis Ny = j+1i+2r — U.

3) Ifj+i>Uandj > U — 2r the item does not fit in the
bin but it is not fragmented. The next state is NV; = 1.

Based on the above rules, we can construct the transition ma-
trix P and calculate (numerically) the equilibrium probability
vector II for any item size distribution.

For the discrete uniform uniform distribution, assuming that
U > 4r, the elements of the matrix P have the following for-
mat:

0 k<2r, k<j<U-—k

2 k—2r<j<k—1, 2r<k  (40)

1 else



The set of equations defined by IT = TIP is

}:n-+ }: , 1<i<a (4
i=U—j+1
1 i
0= 1+ SNoW|, 2r<ji<U (42

i=j—2r

Note that the solution to equation (42) (if it were the only equa-
tion) is Il; = . This means that I; ~ - for j ~ U.
We can therefore use an approximation similar to the one we
presented for r = 1.

We now calculate OH (j). Note that when an item is frag-
mented over two bins, 2r units of overhead are added to it. In
state j > U — 2r all items of size 2 or more are packed in
the next bin, therefore the overhead of each item is U — j. The
average overhead in state j is therefore

1 2rj 1<j<U-2r

OH(j) = 57 - (43)
JU—j) U-2r<j<U

We can now find the average combined size of the items
U—-2r . U
U + 1 2] T JU —7)
I, (NFYy) I1; m——
j=U—-2r+1
(44)

For the optimal packing I,,(OPT) =
expected performance ratio is therefore

U+1 H
L. The asymptotic

21, (NFy)

U+1 (49)

RNFf =
In Figure 3 we present the asymptotic expected performance
ratio for several values of r. The top curve is the asymptotic
expected performance ratio of the V F' algorithm (without frag-
mentation). We can see that when U < 4r the performance
ratio of VF and N F; are almost the same. This makes sense
since when the cost of fragmentation is high it does not pay to
fragment an item; hence fragmentation does not significantly
improve the performance of the algorithm. When U becomes
larger the performance ratio improves. As we expect the per-
formance ratio of NV F is increasing with  but is never more
than the performance ratio of the NF algorithm.

D. General Item Size Distribution

In this section we demonstrate how the analysis can be ap-
plied to any item size distribution. We assume the items are
i.i.d and the probability to draw an item of size i is h;. As we
mentioned earlier, since finding I, (OPT) may be difficult, we
calculate the bin utilization which requires finding I,, (N Fy)
only. We use (15) to calculate the average combined size of
the items. The construction of the transition matrix and the cal-
culation of the equilibrium probabilities is similar to the one
presented in the previous subsections. The calculation of the

1.35 T

13

=
= Ny
N a

R (Performance Ratio)
N
N
(4]

11

1.05

1
10 20 30 40 50 60 70 80 90 100
U (Bin size)

Fig. 3. Expected performance ratio of NI for several values of r.

overhead component oh;(j) (overhead added to an item of size
1 packed in state j) is simple

0 j+i<Uorj=U

ohi(j) =4 2r j+i>U, j<U-2r (46)

U—j j+i>UU-2r<j<U

Example: We present an example using typical parameters
of a data over CATV network. We assume a mini-slot is 25 mi-
crosecond and 16 bytes are transmitted in each mini-slot; the
fragmentation overhead is one mini-slot. In data over CATV
networks a cable modem transfers IP datagrams using Ethernet
packets. We therefore assume the packet have typical Ether-
net distribution with packets of 4, 8, 16, 64, and 94 mini-slots
and with the following probabilities: hy = 0.5, hg = 0.1,
hig = 0.05, hgs = 0.15, and hgy = 0.2. The average item
size of the given distribution is A = 32. We assume the bin size
is U = 100 mini-slots, which corresponds to 2.5 millisecond.
This bin size can be a result of several CBR (MolP) connections
which are scheduled every 5 millisecond and amount to half the
channel utilization.

We are interested in the channel utilization of algorithms
NF and NF;. Using our average case analysis we find that
I.w(NF) = 40.5 and I,,(N Fy) = 32.6. The channel utiliza-
tion of NF is therefore C'n = 0.79. The channel utilization
of NF; is considerably better U}’VoFf = 0.981. The correspond-
ing worst case results for the example are C'jfr = 0.505 and
Cyp, =0.98.

V. CONCLUSIONS

We studied a scheduling problem in which packets may be
fragmented. Such scheduling problem is present in data over
CATV networks as well as in several other applications (e.g.,
[3], [19]). Our analysis can also be used to evaluate the benefits



of using fragmentation in other systems. For example, several
reservation-based satellite systems present a similar scheduling
problem to that of data over CATV (see e.g., [11], [17]) but
fragmentation is not currently implemented in such systems.

To analyze the scheduling problem we introduced a new vari-
ant of bin packing that allows item fragmentation. We con-
verted the scheduling problem into the problem of bin packing
with item fragmentation and showed that the two problems are
strongly related. We defined the NF; algorithm and performed
both worst case and average case analysis to evaluate the sched-
ule efficiency of the algorithm. We developed a new technique,
based on calculating the overhead produced during the packing,
to derive our average case results. This technique may prove
useful in analyzing other problems.

We found that fragmentation can considerably improve the
schedule efficiency. An important characteristic is that sched-
ule efficiency increases with the bin size (gap between real-time
packets). This means that for large bin sizes, the efficiency of
NF; is not far from the optimum. While NF; is not very effi-
cient, it may still be chosen as a practical scheduling algorithm
since it has some important advantage over other algorithms;
NF; is very simple, runs in linear time, and is suitable for on-
line and bounded-space scheduling. Moreover, it keeps a first-
in-first-out order of transmissions.
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