
Bandwidth reservation for bursty tra�c in the presence of resource

availability uncertainty

Israel Cidon Raphael Rom

Dept. of Electrical Engineering

Technion, Haifa, Israel

e-mail: fcidon, romg@ee.technion.ac.il

Yuval Shavitt�

Bell Laboratories, Lucent Technologies

Holmdel, NJ 07733-3030

e-mail: shavitt@ieee.org

Abstract

In this work we suggest algorithms that increase the reservation success probability for bursty

tra�c in high speed networks by adding
exibility to the construction of the routes. These

algorithms are simple enough to be implemented by cheap hardware. They cause no additional

delay to packets that use the original route, and a very small delay to the packets that are rerouted.

In addition, the presented algorithms have a minimal communication overhead, due to the local

nature of their work. Two high-speed network models are considered: source routing and ATM.

1 Introduction

High speed networks are intended to support applications with widely varying tra�c characteristics:

from short database queries to long video streams. In order to use the network resources e�ciently,

bandwidth reservations are made to ensure high probability of data arrival to their destinations.

For applications such as constant bit rate video or voice conversations this is the right approach.

However, for bursty tra�c, i.e., tra�c whose intensity varies in time, reservation itself introduces non-

negligible overhead. Moreover, the widely varying nature of bursty tra�c indicates that a simplistic

burst reservation mechanism would not su�ce. The scheme must consider the burst size and the

timing constraints in its operation, as we brie
y explain below.

Short bursts are those whose transmission time is not more than a few round trip delays. For such

bursts waiting for a reservation, that itself takes a few round trip delays, is clearly not acceptable. The

best method for this type of bursts is to make an initial zero-bandwidth reservation and subsequently

to send the data without reservation and use time-outs (possibly at a higher layer) to detect failures.

Turner [Tur92] suggested an on-the-
y reservation scheme. In his scheme a burst that arrives to an

ATM switch and �nds su�cient bandwidth for its cells, reserves the required bandwidth (to prevent

new bursts from disturbing this one) and proceeds to the next switch towards its destination. This

scheme does not guarantee that a burst that succeeds in reserving enough bandwidth in one switch

�

Corresponding author. Part of this author work was done while he was with the Technion - I.I.T., Haifa, Israel.

1

will also succeed in the next one along the route. Hence the choice of the route is crucial in the

success of the on-the-
y reservation.

The same solution does not �t longer bursts. Here, the overhead of reservation is not as bother-

some so traditional reservation algorithms can be used. Note, however, that this approach is valid

only if there is enough storage at the source to hold the burst data until positive acknowledgment

is received for the reservation signaling [BT92, CGS90]. Thus, such an approach would be useful

for bursty data applications such as FTP in which the data can be easily kept in the source. This

approach would not be useful for bursty real-time application, e.g., variable bit rate video, which

(for storage reasons) cannot tolerate long waiting times for a reservation process to complete.

In this work we suggest algorithms that increase the probability to successfully transfer bursty

tra�c by adding
exibility to the burst routing. We assume that bursty applications reserve no

bandwidth during their set-up process. Instead, bandwidth is requested for each burst separately

(with either on-the-
y or traditional fast reservation algorithms) and is freed immediately after the

burst transmission. The suggested bypass algorithms are simple enough to be implemented by cheap

hardware. Before proceeding we describe two routing approaches for high speed networks with which

our algorithms can be used: source routing and ATM.

Source routing, or Automatic Network Routing (ANR) [CG88], is a routing method where each

packet carries in it the entire route it should traverse. In our discussion, we will assume that the

route is placed in the header as a list of port-IDs (or link-IDs), and each node along the packet route

strips the ID it uses from the head of the list (in practice, there are other methods for handling the

source route that only di�er in technicalities and can be integrated with our algorithm [CG88]). In

networks that employ source routing, the route for the session is computed at the source node using

data that is distributed by a topology update algorithm. It is therefor plausible that routes thus

computed are not optimal (and may not even be feasible). Changing the route on-the-
y amounts

to modifying the source route in the packet's header.

In ATM networks, cells travel along Virtual Circuits (VCs) that are constructed by a concatena-

tion of Virtual Paths (VPs). The VC and VP identi�ers are written in the cell header and possibly

swapped in every switch. Tables in the switches are used to determine the route based on local iden-

ti�ers [Bou92]. For our purpose it is important to note that the routing information is distributed in

the switches along the path the cells traverse. Modifying a cell's route on the
y requires changing

the routing information in several switches { an operation that is neither simple nor fast [CS94]. In

particular, bu�ering requirements for the cells while a new route is created makes on-the-
y rerouting

look impractical.

The algorithms we suggest in this work increase the probability of a successful short burst trans-

mission or the probability of a successful reservation for longer bursts by using local route-de
ections.

Because the route is determined based on somewhat inaccurate data, and because a proper reserva-

tion process is not undertaken, it is possible that the determined route may actually not be able to

accommodate the bandwidth of the burst. To overcome this possible lack of bandwidth local route

de
ections are constructed. To use these de
ections our algorithms use load information from the im-

mediate neighboring nodes. This does not require dissemination of large volumes of load-data across

the network, keeps the information fairly up to date, and increases the probability of reservation

success.

De
ection routing was suggested almost since the beginning of the research on distributed com-

puting. Baran [Bar64] suggested the Hot-Potato heuristic routing where at each switch the routing

2

table stores a list of outgoing links per destination. The list is sorted in decreasing cost order where

the �rst link is the preferred for routing the second one is used should the �rst is blocked, and the i-th

link is used if the �rst i�1 links are not available. Later works [GH92], suggested to use arbitrary link
should the preferred link fail and thus simplify the maintenance of the routing table. However all the

works on WANs [Bar64, FK71, Rud76] relies on global knowledge that should be distributed in the

entire network that maybe combined with local knowledge of the node's queue length [FK71, Rud76].

Our proposal takes these idea one step ahead by allowing nodes to examine the two-hop locale. De-

ection routing was also suggested for local area networks (LANs), multihop lightwave networks and

for interconnection networks and switching fabrics. In these architectures, de
ection decisions are

easy to make since the network topology has a simple regular structure [Max87, Uru91, AS91, KS91],

or since a sense of direction exists [OY90]. Our scheme works for general topologies and thus cannot

rely on the simple decision rules.

Most high speed networks are constructed as an interconnection of specially constructed packet

switches. Unlike traditional switches these switches must support extremely fast streams of small cells

meaning that switching speed is very high and implying that the use of a software operated general-

purpose processor is out of the question. A typical switch is constructed as an interconnection [Tob90]

of port processors (PPs) each supporting a single link [CG88, CGG+93]. The routing of packets that

arrive at the input links is done directly by these PPs. Only packets that require more complex

processing (e.g., control packets) are forwarded to a more sophisticated control unit. Naturally, the

suggested algorithms are designed to be performed by the PPs.

The rest of the paper is organized as follows. In section 2 we describe a fast bypass algorithm for

networks that employ source routing. Next we describe in section 3 a fast bypass algorithm for ATM

networks. Then we demonstrate the algorithm performance by analysis and simulation. In section

4, we analyze the algorithm performance in terms of reservation success probability by assuming

independence in the success probability. The independence is justi�ed by the fact that a burst is

mainly competing against other applications that have constant bit rate. To show the interaction

among bursts we report simulation results in section 5. Finally, we conclude with remarks about

how the algorithm can be applied to other network models.

2 A Fast Bypass Algorithm for Networks with Source Routing

The PPs in a switch share the routing tables that are used for the presented algorithm. Thus, it is

convenient to treat the switch PPs (the hardware) and the controlling algorithms as a single abstract

entity, the node. The algorithm we present in this section works by exchanging load information

in a close locality of every node. To that end, we make use of the following de�nitions. The 2-

neighborhood of a node is the set of nodes that are at most two hops away. A local segment is a single

link or a concatenation of two links leading from a node to another node in its 2-neighborhood. A

local segment is typically a part of a longer path between source and destination nodes. Note that

every local segment uniquely identi�es a node, but several local segments may identify the same

node. The local segment group is the collection of all the local segments that identify the same node.

We use (l1; l2) to signify a two-hop local segment comprised of links l1 and l2 (in that order), and (l1)

for a one-hop local segment. The bypass algorithm will, in congested situations, replace one local

segment with another.

The Bypass Algorithm, BA, is based on frequent load measurements (typically the load indi-

3

cator is the sum of the total reserved bandwidth and the average number of bu�ers occupied by

non-reserved tra�c) of the outgoing links at every node, and on sharing this information with the

immediate neighbors. This way every node has updated knowledge of the load on all the local seg-

ments emanating from it. This information is maintained in a local RoutingTable that has an entry

for each local segment. Each entry in the RoutingTable contains a �eld that indicates the availability

of the local segment, and the preferred alternate local segment should the original one be blocked

(see below). RoutingTable size is quadratic in the output degree of the nodes, and in most practical

networks is not expected to have more than a few tens of entries.

Figure 1A shows an example of a �ve node network. The routing table of node S has 10 entries

for the following local segments: (4) and (3; 5) to node B; (4; 5), (3), and (1; 2) to node D; (1), (3; 2),

and (6; 7) to node I; and (6) and (1; 7) to node C. Suppose a reservation packet for a burst arrives

to node S with the route (1; 2) written in its header and it cannot reserve su�cient bandwidth on

link 1. Three types of bypasses are possible for this reservation packet (see �gure 1B):

a) the direct link to D (a shortcut) that avoids both links 1 and 2,

b) a two-link bypass via node B (identical length) that again avoids links 1 and 2, or

c) a two-link bypass of link 1 to node I (a long bypass) that is followed by link 2.

These types are the only ones considered in this algorithm. To gain more
exibility and de
ection

opportunities, RoutingTable is checked to ensure the ability to reserve bandwidth along the two

hops of the local segment, even when the �rst hop has su�cient bandwidth. If the local segment is

blocked RoutingTable is �rst searched for a bypass that does not increase the route length (types

a and b) and then, if the �rst link in the local segment is blocked, for one that bypasses only the

�rst link (bypass type c). If the search succeeds the new local segment replaces the original one in

the reservation packet header and the packet is forwarded along the de
ected route; otherwise, a

negative acknowledge is sent to the source.

To maintain RoutingTable, we keep for every entry the load of the preferred route. An entry in

RoutingTable is updated when one of the following occurs:

� The load on the preferred route is changed.

� A bypass route with more residual bandwidth (lower load) than the preferred route is found.

Link failures are treated as a maximal decrease in the available bandwidth as will be explained in

section 2.1.

To expedite the processing of reservation packets, RoutingTable is sorted according to the local

segments. This, however, poses an update problem since there may be several local segments that

identify the same node and it is natural to maintain their bypass information simultaneously. To

allow simultaneous updates of all the entries in RoutingTable that refer to the same node, a second

table, HostTable, is used. HostTable is sorted by node-IDs1 with a single entry for every node in the

2-neighborhood. Each entry contains the node-ID and a list of all the local segments that identify

this node, i.e., its local segment group. HostTable can be initialized either when the network is

started or can be built by a topology update algorithm [Seg83].

1
Node IDs can be global or locally assigned by higher level algorithms.

4

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

HHHHHHHj ��
��

��
��*
-

HH
HH

HH
HHj��

��
��*

�

.
.
.
.
. :

.

�
�
�
�
�
�� bbbbbbbb

��������

Q
Q
Q
Q
Q
QQ

�
�
�
�
��
���

���
��

S

I

B

D S

I

D
a

b b

c

c

B

CC

1 2

3

4 5

6

7

(A) (B)

Figure 1: An example network with the three bypass types

2.1 A Detailed Description

In this section, we describe in details how the algorithm data tables are maintained. Then we discuss

how the algorithm works for long bursts that use fast reservation, i.e., when prior to the burst

transmission a reservation packet is sent to reserve bandwidth for the burst. The applicability for

short bursts is discussed in the end of the section.

Two tables are maintained and used by the algorithm: RoutingTable has an entry for each local

segment that comprises four �elds:

� The id of the node at the end of the local segment.

� The load of the local segment.

� The preferred alternative local segment.

� The load of the preferred alternative local segment.

The maintenance of this table is described below. HostTable has an entry for each node in the

2-neighborhood that lists all the local segments in the local segment group of the node.

Every node periodically measures the loads on the links that emanates from it. The way these

measurements are made is out of the scope of this paper. For our purpose, it is enough to assume that

the resulting load indicator is based on both reserved and non-reserved tra�c. The load indicators

are sent to the immediate neighbors and are locally used to update RoutingTable as follows. For

every emanating link, the load entry of the one-hop local segment is updated. If the direct link is the

preferred route then the preferred load �eld in the entries of its local segment group are updated.

If its load is lighter than the one of the preferred route of its local segment group then the local

segment is written in the preferred route �eld and its load is written in the preferred route load �eld

5

in the entries of all the members of the local segment group. The members of the group are easily

located with HostTable.

The measurements are sent to the neighbors as a list of number pairs, a link id and its load. For

every link in the list, the load of the corresponding local segment is updated. If this local segment is

the preferred local segment the load �eld of the preferred route in the entries of all the members in

the local segment group is updated. If the local segment load is lighter than the one of the preferred

local segment then the �rst becomes the preferred local segment and the entries of the local segment

group are changed to re
ect this, i.e., the local segment is written in the preferred local segment �eld

and its load is written in the preferred local segment load �eld.

A failure in a link that is not directly connected to a node is treated as if the available bandwidth

of this link dropped to zero, and can be reported by sending a measurement list. A failure in a link

adjacent to a node requires a pass through the entire RoutingTable (typically, few tens of entries)

to search for all the entries that have this link as part of their preferred local segment, and then to

update their load to the maximum, so that every new measurement of a di�erent local segment will

update it. This process is not e�cient, but is used only in the rare event of link failure and only in

the two nodes at the ends of the failed link.

For long bursts a reservation packet is sent prior to the burst transmission [BT92]. This packet

carries a list of the port ids it should traverse. In addition, while the reservation packet traverses

the network, a backward route is built and stored in the packet. When a reservation packet arrives

to the switch, the local segment entry in RoutingTable is checked to see if su�cient bandwidth is

available. The following cases are possible:

� There is su�cient capacity for the burst along the original local segment | Reservation is

made in the link emanating from the switch, and the reservation packet is forwarded to the

next hop.

� There is insu�cient capacity for the burst along the original local segment but a type a- or

type b bypass with su�cient capacity exists | The preferred local segment from RoutingTable

is inserted to the reservation packet header instead of the original local segment, reservation is

made in the �rst link in the preferred local segment, and the reservation packet is forwarded

to the next hop.

� There is insu�cient capacity for the burst along the original local segment and only a type

c bypass with su�cient capacity exists | If the �rst link in the local segment has su�cient

capacity the reservation is treated as if su�cient capacity exists for the entire route, if the �rst

does not have su�cient capacity the preferred local segment for this link is used as described

for the type a- and type b bypasses.

� There is insu�cient capacity for the burst along the original local segment and no bypass with

su�cient capacity exists | A negative acknowledgment is sent to the source using the backward

route that is stored in the reservation packet, the negative acknowledgment carries the route

the reservation packet traversed before it was blocked to allow the release of the bandwidth

from the part where it was allocated.

When the reservation packet arrives at the destination node, A positive acknowledgment is sent to the

source using the backward route that is stores in the reservation packet. The positive acknowledgment

6

carries the route the reservation packet traversed which is put by the source in the header of all the

packets in the burst. This ensures that all the burst packets travel along the route where reservation

was made.

Short Bursts

As explained in the introduction, short bursts are sent without reservation, or with on-the-
y reser-

vation packet that precede them. The direct use of on-the-
y reservation scheme with our de
ection

mechanism is not possible for source routing networks since the switches do not hold tables about

the connections where the reservation and the routing information can be stored. Thus we suggest

two alternatives: 1) to de
ect each packet of a short burst in a way that will try to route all the

packets together, and 2) to add tables to the source routing switches.

Next, we describe how to de
ect each of the data packets of short bursts according to RoutingTable.

When a packet arrives at a switch it is routed according to the preferred route in RoutingTable re-

gardless of the availability of bu�er space (the "bandwidth" of the non-reserved tra�c) in the original

route. The mandatory use of RoutingTable ensures that, in case of marginal bu�er occupancy, i.e.,

when the bu�er pool is full and the input and output rates to the bu�er are almost equal, packets

of a burst will not be spread between the original route and the preferred route. The changes of

the preferred route entries are not frequent, thus, the chances that a short burst will be sent over

di�erent routes are small. The probability of packets arriving out of order can be kept smaller by

using hysteresis function to change between routes in RoutingTable. Note, that even in case where

the packets arrive out of order, many transport protocols, e.g., TCP, are capable of handling them

correctly. The routing along the preferred route in RoutingTable is also useful in directing the non-

reserved tra�c to the less condensed links of the network, leaving more free bandwidth in the highly

used links, and thus lowering the reject probability and the delay along these links.

Although the probability of packets arriving out of order is small, we suggest here another al-

gorithm adaptation for the case where it is not acceptable. For this end we need a BypassTable

to be maintained in the switches; the table contains an entry for each bursty connection that uses

short bursts with on-the-
y reservation. When such a connection is established an entry is opened in

BypassTable, this entry will hold the selected local segment for the burst. When an on-the-
y reser-

vation packet arrives at the switch, reservation is attempted for the current preferred local segment

taken from RoutingTable. In case of success, the preferred local segment is written in BypassTable;

this local segment is written to the header of each data packet of this burst. The burst is succeeded

by a release packet that releases the reserved bandwidth. If reservation cannot be made, a negative

acknowledgment is sent back to the source, and the BypassTable is set to a null value that cause

the discarding of the burst packets.

2.2 Avoiding Loops

De
ection routing in general and BA in particular may cause a packet to cycle in loops. We next

demonstrate how BA can cause a packet to travel in a two link loop. Consider the network of Figure

2 and suppose a packet reaches node A and is trying to reach node C through link 3. At the time

the packet arrives at node A, the bu�ers of link 3 are all full, there are free bu�ers in front of link 1,

and RoutingTable indicates that the preferred bypass for the local segment (3) is the local segment

(1; 2). The packet is, thus, sent via the bypass (1; 2). Suppose the packet is somewhat delayed in

7

��
�� ��

��HHHHH

��
��
�

��
��
A 3

B

C1

2

Figure 2: An example of a bypass loop

the queue and when it reaches node B link 2 has no free bu�ers but according to RoutingTable the

preferred bypass to segment (2) is (1; 3) since links 1 and 3 are not totally full now. As a result the

packet is de
ected back to node A.

On the one hand, going in circles or busy waiting, can be considered as a good solution since

instead of discarding the packet we use the network as storage. On the other hand, if the bu�ers of

the switches are all almost full we might create a livelock where messages travel around and never

reach their destinations, or do so after consuming too much network resources. To disable routing

loops, a bit in the packet header can be set the �rst time the packet is de
ected and if a second

de
ection is needed the packet is discarded. If more routing
exibility is needed few bits can be

allocated in the packet header to bound the number of de
ections above one. Two or more allowed

de
ection may theoretically cause a packet to go in cycles, but in practice, the probability for this is

small if the number of bypasses is kept small. The analysis in section 4 shows that allowing only one

de
ection signi�cantly decrease the rejection probability, while the residual contribution of additional

de
ections to the success probability of the packet decrease for every additional allowed bypass.

3 A Fast Bypass Algorithm for ATM Networks

In this section we �rst adapt the bypass algorithm presented in the previous section to long bursts

in ATM networks, the adaptation to short bursts is discussed in the end of this section. In networks

that employ source routing, once we identify a blocked link and know about a local segment that

bypasses it, we can de
ect the message by changing the routing information in its header. In ATM

networks the routing information is not carried in the cells but is scattered in the switches along the

path it traverses. Changing the routing information in several switches to create a de
ection route

is therefore neither simple nor fast [CS94]. In particular, bu�ering requirements for storing the cells

while the new route is created make on-the-
y de
ection look impractical.

We suggest, instead, to preprepare for congestion when a VP is constructed. Upon a VP con-

struction, loaded areas are identi�ed and bypass routes are created to be used when the primary

route is blocked. Each VPi is assigned two VPIs: VPIi for the primary route and VPI0i for the

bypass route. In �gure 3A the primary VP is drawn with solid lines and the bypass routes with

dotted lines. As already stated, bursty VCs are brought up with no bandwidth reservation, and use

a fast reservation algorithm whenever there is a burst to transmit [BT92]. In ATM networks, fast

reservation algorithm use monocell messages that traverse the VC route, reserve bandwidth in one

direction, and acknowledge/reject a reservation request in the reverse direction. Since ATM VCs are

unidirectional, the reverse direction does not necessarily use the same physical links.

8

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

?

?

?

?

?

?

Z
ZZ~

S
S
S
SSw

��=

..........................+

?

?

?

?

?

?

=

..
..

w

.
.
.
.
.
.
.

�
....

~

.
.
.
.

1

6

2

3

4

8

5

7

9

4'

2'

1

6

2

3

4

8

5

7

9

A. A VP with bypass routes. B. A tree representation of A.

Figure 3: A VP with bypass routes and its tree representation

We now show how reservation cells are de
ected to create bypass VCs, and how the switches

identify and route cells that belong to bypass VCs. We term the switches where a bypass starts

(switches 2 and 4 in �gure 3A) junction switches. A reservation cell starts its way on the VP

with the primary VPI. Non-junction switches do not participate in the de
ection process. When a

reservation cell arrives at a junction switch that is unable to ful�ll the burst request for bandwidth

in the primary route it tries to reserve bandwidth in the �rst link of the bypass. Upon a success, the

reservation cell is forwarded to the bypass link and its VPI is set to the secondary VPI. In addition,

the junction switch registers the VC in a separate table, BypassTable. The values registered in

BypassTable are the secondary VPI (cells of this burst will use it as their VPI), the VCI, and the

rest of ATM switching data, i.e., the local VPI in the next hop and the output port-ID. A bandwidth

release cell that follows the end of the burst cause the deletion of the corresponding entry from

BypassTable.

Usually, the arrival of a reservation cell to the switch at the end of the VP triggers the transmission

of an Ack to the VC-switch at the beginning of the VP. Similarly, the successful arrival of a reservation

cell with the secondary VPI to the end of the VP triggers the transmission of a similar message,

9

Ack0, signaling the local source that the cells of this burst should be switched through the secondary

VPI (or, if the source is the origin of the cells, it should initiate the cells with the secondary VPI).

When a data cell arrives with the secondary VPI at a junction switch, BypassTable is searched and

if a match is found the cell is routed according to the data in the table. Otherwise, if no match is

found in BypassTable the cell is routed according to the ATM switching table.

The suggested bypass algorithm o�ers 2m potential routes (where m is the number of junction

switches) for the price of only two VP identi�ers and less than four switching table entries in every

switch. The switching information to the next switch in the primary route is saved in two entries:

one for the primary VPI and one for the secondary VPI. The two entries have identical switching

information. If a VC reserves bandwidth for a burst in a bypass route, an entry in BypassTable

keeps the switching information of the de
ected route. This entry is created only in the junction

switches where the VC is de
ected, and is deleted when the bandwidth is freed. In the switches of

the bypass routes one entry for the secondary VPI is kept in the regular switching tables. There is

no need for an entry for the primary VPI.

In practice, a network manager might wish to bound the number of bypasses to keep the stretch

factor, i.e., the ratio between the original VP length (in hops) and the length of the VC with the

bypasses, low. A small counter in the reservation cell can be used to implement any practical bound,

and in particular one bit can be used to allow only one bypass.

Examining the VP with the bypasses of �gure 3A one can easily identify a tree rooted at the

destination as depicted in �gure 3B. This suggests an alternative way to look at the bypass scheme:

instead of building a shoelace VP, we build a VP with a tree structure, such that every leaf except

the VP entry point must also be an internal node of another branch of the tree. An interesting

extension to this algorithm will enable the bypassing of a bypassed route, e.g., in �gure 3 if the link

between switches 9 and 5 is loaded one may wish to use a direct link between switches 9 and 6.

Other uses of tree shaped VPs can be found in [CPSWL96].

Short Bursts

In ATM networks, unlike with networks that employ source routing, we can use on-the-
y reservation

for short bursts to ensure that all the cells of a short burst use the same route. To this aim, we

prepare for each VC in the set-up procedure an entry in BypassTable that points to the primary VP

link. When a short burst is sent it is preceded by a reservation cell and followed by a release cell.

On the arrival of the reservation cell the PP set BypassTable according to the available bandwidth

in the primary and secondary routes. The data cells that are sent always with the secondary VPI

are routed according to the information in BypassTable.

4 Analysis

In this section we compute the improvement in the reservation success probability when our algorithm

is used in several networks with regular structure. Throughout the analysis we assume that the

probability to succeed in reserving bandwidth on a link is p for all the links, and this probability

is independent for every link. This independence assumption is a standard assumption used in the

literature (see [Wid95] and the references therein). The independence is justi�ed by the fact that

a burst is mainly competing against other applications that have constant bit rate, and not against

10

other bursts. Even in the case when bursts are competing against each others, we showed by analysis

and simulations [CRS96] that after smoothening at the network entrance, the success probability for

bursts is almost constant. We assume that the original routes (VPs in the case of ATM) are all

shortest path routes.

The way the algorithm is implemented impacts its performance. For source routing, we suggested

in section 2 that the availability of the local segment will be checked at every switch. If no local

segment with su�cient bandwidth is found the burst (or reservation cell) can be discarded. For the

case where only the second hop is blocked and especially in the case of fast reservation algorithm

when a reservation cell is sent, we suggest to forward the reservation request in the hope that a

bypass will be found. The suggested implementation increase the reservation success probability at

the price of increased switch complexity and cost. Another variant is to check RoutingTable only if

the burst can not be forwarded, which implies no extra handling for the bursts if the route in not

loaded. The performance of this implementation is the worst since it does not allow a bypass from

a bypass route. We choose this variant for the analysis of this section.

For ATM, we suggested in section 3 to check in every junction switch the local segment, and to

de
ect the burst if the local segment is blocked. In the analysis of this section we assume, as for

the source routing model, the less e�cient implementation where only if the �rst hop in the local

segment is blocked a bypass is searched.

Hypercubes

In hypercubes every two-hop route has exactly one two-hop bypass, every h-hop route can be

bypassed in h � 1 points, and none of the bypass routes share links. It is clear that the success

probability of a reservation along an h hop VP is ph. If we allow only one bypass for a burst route,

allow every link to be bypassed, and build the VP-tree to contain h � 1 (h � 1) bypass routes (in

the ATM model) the success probability of the reservation grows to

ph[1 + (h� 1)(1 � p)] (1)

in both network models. If we do not limit the number of bypass the success probability along an

h-hop route, S(h), is given by the recurrence

S(0) = 1 (2)

S(1) = p (3)

S(h) = pS(h� 1) + (1� p)p2S(h� 2) (4)

The solution of this recurrence (see [GK82]) gives the expression for S(h), h � 2

S(h) =
1

2

�
1 +

1p
5� 4p

�"
p(1 +

p
5� 4p)

2

#h
+
1

2

�
1� 1p

5� 4p

�"
p(1�p5� 4p)

2

#h
(5)

Triangulated Graphs

A planar graph where every region is bounded by a circuit of three edges is said to be triangulated

[BS65]. Consider, �rst, a lattice of triangles (�gure 4). A shortest path route in a triangular lattice

has no 60� turns. The probability that a two-hop segment is congested is 1� p2.

We look, �rst, at networks that employ source routing. If there are no turns in a path, a congested

link can be bypassed by one of two possible two-link type c bypasses with probability 1� (1� p2)2.

11

Figure 4: A lattice of triangles

If there is a 120� turn in the path the bypass probability is higher since an additional type b bypass

can be found. When only one bypass is allowed the success probability of reservation along an h hop

route is at least

ph
�
1 + h(1 � p)[1� (1� p2)2]=p

�
(6)

We assume that in an ATM network only one bypass route is prepared per link. The success

probability under this assumption when only one bypass is allowed is at least

ph (1 + h(1� p)p) (7)

If K bypasses are allowed the success probability is given by summing all the possible combinations

to have K or less reservation failures along the path:

ph
KX
k=0

h

k

!
(1� p)kpk (8)

For K = h we get

ph
�
1 + p� p2

�h
(9)

For general triangulated networks, let h be the number of links in a path of length H that are

part of a triangle. Note that since we consider only shortest path VPs, no two links in a VP belong

to the same triangle. Based on our previous results, we can write the following lower bounds for

the success probability when only one bypass is allowed (in the worst case there is only one type c

bypass for each of the h links in both network models)

pH (1 + h(1� p)p) (10)

If K bypasses are allowed the success probability is, as above:

pH

KX
k=0

h

k

!
(1� p)kpk

!
(11)

For K = h we get

pH
�
1 + p� p2

�h
(12)

Grids and Chordal Rings

12

A. A chordal ring B. A grid

Figure 5: (A) a chordal ring with a three node chord and (B) a 3X3 grid.

A chordal ring (see �gure 5A) is a ring structured network with an even number of nodes in

which each node has an additional link, called a chord, to some other node in the network [AL81].

We shall term the links that connect a node to its ring neighbors neighbor links. A point in a route

where a packet is switched from a neighbor link to a chord or vice versa is called a turn. In a grid

network (see �gure 5B) a turn in a route is a point where a packet is switched from a horizontal link

to a vertical link or vice versa. In the two topologies, bypasses are possible only around the two links

that are connected to a turn. Let the number of turns be m and let the number of links in a path

be H.

When only one bypass is allowed, the success probability is

pH (1 +m(1� p)) (13)

for both network models. If K bypasses are allowed the success probability is

pH
KX
k=0

m

k

!
(1� p)k (14)

if the turns are at least three hops apart. For K = m we get

pH (2� p)m (15)

5 Interaction Among Bursty Connections

This section complements the previous section by examining via simulation the mutual interaction

among bursty connections. To isolate this e�ect the simulations test the mutual interaction among

two identical bursty connections that use the fast reservation protocol: 0 ! 2 ! 4 and 1 ! 2 ! 3

(see �gure 6). Two simulations were run: one with almost zero delay on the lines and one were all

the line delays are set to one unit. The rest of the simulation parameters are:

� The burst size is exponentially distributed with mean 50.

� Line capacity is 5 bursts.

Figure 7 compares the success probabilities for the two simulations. Every point in the graphs

represents the average of �ve simulations, most simulations count at least 100,000 bursts (the excep-

tions are the very lightly loaded simulations where the success probability is very close to 1). The

13

4

1 0

3

2

Figure 6: The graph used in the simulations

10% con�dence interval for the points in the two top graphs of �gure 7 where below 1/2% for loads

smaller than 5, and between 1/2 and 3/4% for loads higher than 5. The improvement in the success

probabilities is 5-10% for loads between 0.5 and 2; for lower loads the success probability is almost

1 even without the bypass algorithms, leaving a small room for improvements; loads higher than 2

are not often seen and do not last for long. For very high loads, there is a decrease of up to 2% in

the success probability when the delay is not negligible. The reason for this decrease is that as the

network becomes congested the average reserved route becomes longer (see �gure 9) and thus the

link holding time for a connection, which equals the sum of the connection holding time and twice

the end-to-end propagation delay, becomes longer.

It is interesting to compare the measured improvement of the bypass algorithm that is depicted

in �gure 7 to an analytical queueing model. In the �gure 8, we depict the increase in the success

probability between two queueing systems that closely model the simulations described above. Sys-

tem A models the simulation without the bypass algorithm. Since there is no interaction between

the two connections, and each link can support �ve bursts simultaneously, system A is an M/M/N/N

queue with �ve servers, where the service time is distributed as the burst length in the simulation

(i.e., exponentially with mean 50) and the arrival process is the same as the burst arrival process for

each connection in the simulation (i.e., Poisson with rate in the range [0.01, 1]). System B models

the simulation when the bypass algorithm is used. Here the links that are represented by the servers

in the analytical model are shared by the two connections. Thus, system B is an M/M/N/N queue

with ten servers, where the service time is distributed as the burst length in the simulation, and the

arrival process is the sum of the burst arrival processes for the two connections in the simulation

(i.e., Poisson with rate in the range [0.02, 2]). Figure 8 depicts the increase in the success probability

of customer to receive service in system B compared to this probability in system A, i.e.,

1� Prej;A(�)

1� Prej;B(2�)
(16)

where

Prej;A(�) =
(�=�)5

5!

,
5X
i=0

(�=�)i

i!
(17)

Prej;B(�) =
(�=�)10

10!

,
10X
i=0

(�=�)i

i!
(18)

14

0 5 10
0

0.2

0.4

0.6

0.8

1
One Unit Delay

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Load
0 5 10

0

0.2

0.4

0.6

0.8

1
Almost Zero Delay

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Load

0 5 10
−5

0

5

10
One Unit Delay

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Im
pr

ov
em

en
t [

%
]

Load
0 5 10

0

2

4

6

8

10

12
Almost Zero Delay

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Im
pr

ov
em

en
t [

%
]

Load

Figure 7: The e�ect of the bypass algorithm on the success probability of bursts

6 Concluding Remarks

The algorithms presented here can be used in both models, ATM and source routing, for long bursts

that use fast reservation algorithms and for short bursts. For bursts that use fast reservation, our

algorithms adhere to the reservation principle of the network whether it is ATM based or source

routing. For short bursts, we suggest to use on-the-
y reservation in the ATM model and either

on-the-
y or no reservation in source routing networks.

Although only two network models are discussed in this paper, the presented algorithm can be

easily adapted for other network model, e.g., the up�/down� routing [SBB+91] of Autonet [SBB+91],

AN2 [Owi93], and Myrinet [FDCF94]. In these networks, the links form a rooted tree on which

wormhole routing in performed. The up�/down� routing constrains a message from using a link in

the \up" direction after it traverse a link in the \down" direction and thus exhibits deadlock freeness.

Two approaches can be taken to adapt the bypass algorithm to this routing discipline:

� Limit the bypass possibilities in the case of a (down,down) local segment to allow only (down,down)

or (down) bypasses. This way, if a climbing worm (one that traversed the last link in the \up"

direction) arrives allowed bypass possibilities (e.g., (up,down)) are not considered.

� Maintain two preferred routes in RoutingTable, one for climbing worms and (possibly dif-

ferent) one for descending worms. This option is not recommended since it complicate the

15

0
5

10
0 2 4 6 8 10

Load

Improvement in success probability [%]

M
/M

/N
/N

 Q
ueues

F
ig
u
re
8
:
T
h
e
e�
ect

o
f
th
e
b
y
p
a
ss
a
lg
o
rith

m
o
n
th
e
su
ccess

p
ro
b
a
b
ility

o
f
b
u
rsts

|
a
n
a
ly
tica

l
resu

lts.

a
lg
o
rith

m
a
n
d
h
a
rd
w
a
re

w
h
ile

it
im

p
rov

es
su
ccess

p
ro
b
a
b
ility

o
n
ly

fo
r
(d
ow

n
,d
ow

n
)
lo
ca
l
seg

-

m
en
ts,

(u
p
,u
p
)
a
n
d
(u
p
,d
ow

n
)
ty
p
e
lo
ca
l
seg

m
en
t
ca
n
b
e
fo
llow

ed
o
n
ly

b
y
clim

b
in
g
w
o
rm

s.

O
n
e
o
f
th
e
im

p
o
rta

n
t
m
erits

o
f
o
u
r
a
lg
o
rith

m
is
th
e
a
b
ility

to
im

p
lem

en
t
it
w
ith

sim
p
le
h
a
rd
w
a
re

w
ith

o
u
t
a
d
v
ersely

e�
ectin

g
p
erfo

rm
a
n
ce.

In
[C
R
S
9
4
]
w
e
d
escrib

e
a
p
o
ssib

le
im

p
lem

en
ta
tio

n
o
f
o
u
r

a
lg
o
rith

m
fo
r
a
so
u
rce

ro
u
tin

g
b
a
sed

n
etw

o
rk
.
T
h
is
im

p
lem

en
ta
tio

n
d
o
es

n
o
t
a
d
d
d
elay

to
p
a
ck
ets

th
a
t
a
re

n
o
t
d
e

ected

,
a
n
d
a
d
d
s
o
n
ly

a
sm

a
ll
d
elay

(a
few

b
y
te

tra
n
sm

issio
n
tim

e)
to

th
e
o
n
es

th
a
t

a
re

d
e

ected

.
T
h
is
p
a
p
er

is
o
n
ly

th
e
�
rst

step
in

eva
lu
a
tin

g
th
e
p
ra
ctica

lity
o
f
o
u
r
a
lg
o
rith

m
s.

A
n

in
ten

se
sim

u
la
tio

n
stu

d
y
is
req

u
ired

a
s
a
fu
tu
re

w
o
rk
.

R
e
fe
r
e
n
c
e
s

[A
L
8
1
]

B
ru
ce

W
.
A
rd
en

a
n
d
H
ik
y
u
L
ee.

A
n
a
ly
sis

o
f
ch
o
rd
a
l
rin

g
n
etw

o
rk
.
IE
E
E
T
ra
n
sa
ctio

n

o
n
C
o
m
p
u
ters,

c-3
0
(4
):2

9
1
{
2
9
5
,
A
p
ril

1
9
8
1
.

[A
S
9
1
]

A
.
S
.
A
ca
m
p
o
ra

a
n
d
S
.
I.
A
.
S
h
a
h
.

M
u
ltih

o
p
lig
h
tw
av
e
n
etw

o
rk
:
a
co
m
p
a
riso

n
o
f

sto
re-a

n
d
-fo

rw
a
rd

a
n
d
h
o
t-p

o
ta
to

ro
u
tin

g
.
In

IN
F
O
C
O
M
'9
1
,
p
a
g
es

1
0
{
1
9
,
1
9
9
1
.

[B
a
r6
4
]

P
a
u
l
B
a
ra
n
.
O
n
d
istrib

u
ted

co
m
m
u
n
ica

tio
n
s
n
etw

o
rk
s.
IE
E
E
T
ra
n
sa
ctio

n
s
o
n
C
o
m
m
u
-

n
ica

tio
n
s
S
y
stem

s,
C
S
-1
2
(1
):1

{
9
,
M
a
rch

1
9
6
4
.

[B
o
u
9
2
]

J
ea
n
-Y
v
es
L
e
B
o
u
d
ec.

T
h
e
a
sy
n
ch
ro
n
o
u
s
tra

n
sfer

m
o
d
e:

a
tu
to
ria

l.
C
o
m
p
u
ter

N
etw

o
rks

a
n
d
IS
D
N

S
y
stem

s,
2
4
:2
7
9
{
3
0
9
,
1
9
9
2
.

[B
S
6
5
]

R
o
b
ert

G
.
B
u
sa
ck
er
a
n
d
T
h
o
m
a
s
L
.
S
a
a
ty.

F
in
ite

G
ra
p
h
s
a
n
d
N
etw

o
rks:

a
n
in
trod

u
ctio

n

w
ith

a
p
p
lica

tio
n
s.

M
cG

raw
-H
ill,

1
9
6
5
.

[B
T
9
2
]

P
ierre

E
.
B
oy
er

a
n
d
D
id
ier

P
.
T
ra
ch
ier.

A
reserva

tio
n
p
rin

cip
le
w
ith

a
p
p
lica

tio
n
s
to

th
e

A
T
M

tra
�
c
co
n
tro

l.
C
o
m
p
u
ter

N
etw

o
rks

a
n
d
IS
D
N

S
y
stem

s,
2
4
:3
2
1
{
3
3
4
,
1
9
9
2
.

1
6

0 5 10
2

2.2

2.4

2.6

2.8

3

Load

A
ve

ra
ge

 R
ou

te
 L

en
gt

h

One Unit Delay

0 5 10
2

2.2

2.4

2.6

2.8

3

Load

A
ve

ra
ge

 R
ou

te
 L

en
gt

h

Almost Zero Delay

Figure 9: The length of the reserved route as a function of the load.

[CG88] Israel Cidon and Inder Gopal. PARIS: an approach to integrated high-speed private

networks. International Journal of Digital and Analog Cabled Systems, 1(2):77 { 86,

April-June 1988.

[CGG+93] I. Cidon, I. Gopal, P. M. Gopal, R. Gu�erin, J. Jannielo, and M. Kaplan. The

plaNET/Orbit high speed network. Technical Report RC-18270, IBM, T. J. Watson

Research Center, Yorktown Heights, NY, March 1993.

[CGS90] Israel Cidon, Inder Gopal, and Adrian Segall. Fast connection establishment in high

speed networks. In ACM SIGCOM'90, pages 287 { 296, 1990.

[CPSWL96] Reuven Cohen, Baiju Patel, Frank Scha�a, and Marc Willebeek-LeMail. The sink tree

paradigm: Connectionless tra�c support on ATM LANs. IEEE/ACM Transactions on

Networking, 4(3), June 1996.

[CRS94] Israel Cidon, Raphael Rom, and Yuval Shavitt. Fast bypass algorithms for high-speed

networks. Technical Report EE PUB No. 924, Technion - Israel Institute of Technology,

June 1994. Submitted for publication.

[CRS96] Israel Cidon, Raphael Rom, and Yuval Shavitt. Analysis of one-way reservation algo-

rithms. Journal of High-Speed Networks, 5(4):347 { 363, 1996.

[CS94] Reuven Cohen and Adrian Segall. Connection management and rerouting in ATM

networks. In INFOCOM'94, pages 184 { 191, June 1994.

[FDCF94] Robert Felderman, Annette DeSchon, Dany Cohen, and Gregory Finn. ATOMIC: a

high-speed local communication architecture. Journal of High Speed Networks, 3(1):1 {

28, 1994.

[FK71] G. L. Fultz and L. Kleinrock. Adaptive routing techniques for store-and-forward

computer-communications networks. In ICC'71, pages 39.1{8, 1971.

17

[GH92] Albert G. Greenberg and Bruce Hajek. De
ection routing in hypercube networks. IEEE

Transactions on Communications, COM-40(6):1070 { 1081, June 1992.

[GK82] Daniel H. Greene and Donald E. Knuth. Mathematics for the Analysis of Algorithms.

Birkhauser, second edition, 1982.

[KS91] Mark J. Karol and Salman Z. Shaikh. A simple adaptive routing scheme for congestion

control in Shu�eNet mulihop lightwave networks. IEEE Journal on Selected Areas in

Communications, 9(7):1040 { 1051, September 1991.

[Max87] Nicholas F. Maxemchuk. Routing in the Manhattan street network. IEEE Transactions

on Communications, COM-35(5):503 { 512, May 1987.

[Owi93] Susan S. Owicki. A perspective on AN2: Local area network as distributed system.

In 12th annual ACM Symposium on Principles of Distributed Computing, pages 1{11,

1993.

[OY90] Y. Ofek and M. Yung. Principles for high speed network control: loss-less and deadlock

freeness, self routing and a single bu�er per link. In 9th annual ACM Symposium on

Principles of Distributed Computing, pages 161{175, 1990.

[Rud76] H. Rudin. On routing and 'delta-routing': a taxonomy and performance comparison

of techniques for packet-switched networks. IEEE Transactions on Communications,

COM-24(1):43 { 59, January 1976.

[SBB+91] Michael D. Schroeder, Andrew D. Birrell, Michael Burrows, Hal Murray, Roger M.

Needham, Thomas L. Rodehe�er, Edwin H. Satterthwaite, and Charles P. Thacker.

Autonet: A high-speed, self-con�guring local area network using point-to-point links.

IEEE Journal on Selected Areas in Communications, 9(8):1318 { 1335, October 1991.

[Seg83] Adrian Segall. Distributed network protocols. IEEE Transaction on Information The-

ory, IT-29(1):23 { 35, January 1983.

[Tob90] Fouad A. Tobagi. Fast packet switch architectures for broadband integrated services

digital networks. Proceedings of the IEEE, 78(1):133 { 167, January 1990.

[Tur92] Jonathan S. Turner. Managing bandwidth in ATM networks with burtsy tra�c. IEEE

Network, 6(5):50 { 58, September 1992.

[Uru91] Shigeo Urushidani. Rerouting network: A high-performance self-routing switch for B-

ISDN. IEEE Journal on Selected Areas in Communications, 9(8):1194 { 1204, October

1991.

[Wid95] I. Widjaja. Performance analysis of burst admission-control protocols. IEE Proceedings

{ Communications, 142(1):7 { 14, February 1995.

18

