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Abstract -- Traditional communication switches include
an embedded processor that implements both the switch
control and network signalling. Such an architecture is fail-
ure-prone due to the complexity of the control software of
modern network. Recently, a new approach of controlling
switches through an external controller is gaining momen-
tum, due the flexibility and reliability it affords. In addi-
tion, open control protocols and interfaces for controlling
and managing networks, are now emerging as an alterna-
tive to specifications and standards. For instance, in the
OpeNet project Sun Labs has designed and implemented
an open, high performance ATM network control platform.

In this paper we describe the OpeNet Switch Control
Interface (ONSCI)--an open local switch control protocol,
for controlling an ATM switch. An ATM switch controller
uses this protocol to setup or tear down virtual circuits and
perform other control and management functions in an
ATM switch. Important and distinguished features of this
protocol are primitives for Quality of Service (QoS)
management in the switch and support for fault-tolerant
operation in case of failure of a switch controller. The
design of these primitives is based on conceptual modeling
of the switch architecture. The model is generic enough to
cover a wide range of ATM switches.

The other primitives for switch management and control
are borrowed heavily from Ipsilon’s GSMP protocol. They
include primitives for switch configuration, port and switch
management, VP management and performance
monitoring.

The protocol was implemented and integrated with the
OpeNet platform. Without going into specifics of the
protocol, we describe its design principles and show how it
has affected our protocol.

Keywords: ATM, GSMP, QoS, Fault Tolerance, Availabil-
ity, Reliability, IP-Switching, Open Interfaces, Admission
Control, GCAC, PNNI.

I.  Introduction

Communication switches are built from two major compo-
nents: a hardware component where the data switching takes
place, and a software component which provides the control
mechanisms and the integration of the individual switch into a
complete network. In traditional switches the control software
is implemented on a dedicated processor embedded into the

switch’s hardware. This integration is typically tightly couple
and is tailor-made for the specific hardware and network app
cation. Such an architecture suffers from many disadvanta
such as inability to cope with the progress of processor a
software technology and the inability to re-use the software.

A new trend has started recently and is gaining momentu
to devise open network architectures based on distributed s
tems principles. Several research groups as well as netw
equipment manufacturers are engaged in active pursuit of
problem. Moreover, standardization efforts have recen
started by the IEEE (e.g., the P1520 working group on applic
tion programming interfaces for networks [10] and its ATM
sub-working group) with a goal of defining APIs for future
multimedia networks. With such an interface in place, the co
troller is typically detached from the rest of the hardware, ne
not be tightly coupled with it, the entire design allows for eas
upgrading of software and lends itself to better fault toleranc

As part of its activities, Sun Microsystems Laboratorie
designed and implemented OpeNet [12][11], an open, non-p
prietary, high performance, switch independent ATM netwo
control platform. To achieve the goal of switch independenc
none of the mechanisms deployed by OpeNet rely on any p
ticular switch. However, to be deployed for operation, th
OpeNet must be interfaced with an actual ATM switch. Thu
the need for a generic interface to control ATM switches w
felt. This lead to the development of the OpeNet Switch Co
trol Interface (ONSCI) [13] which is the subject of this docu
ment.

Our work has two basic distinguishing features from oth
works on open ATM switch control interfaces. Firstly, we pro
vide support for managing Quality of Service (QoS) in th
switch in a manner compatible with the ATM Forum specifica
tions. Secondly, primitives for fault tolerant operation are pr
vided to assist recovery of a switch controller after its failur
In the event of failure of a switch controller, a backup contro
ler (or the recovering failing controller) may assume the co
trol of the switch and after some recovery operations, sta
functioning as its primary controller. Other operations su
ported by ONSCI are setting up and tearing down VCs, confi
ure and manage its ports, manage its VPs and get ot
statistics and information related to performance monitorin
The interface uses a message exchange protocol which is
ent/server in nature; the switch controller sends requests to
switch which responds after processing the request.

Our design also assumes that an ATM switch has very li
ited computational resources and only a simple software co
ponent. This is expected since all of the heavy control a
1
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management functionality which used to be present in a tradi-
tional ATM switch, has been moved to the external switch con-
troller, leaving mainly the functionality of cell forwarding in
the ATM switch. Our preliminary experiments with a GSMP
capable ATM switch supplement this assumption. A Sun Sparc
Station 20 was easily able to saturate the switch with GSMP
requests, indicating that the switch CPU had limited capacity.

There has been similar work on this subject such as, Gener-
alized Switch Management Protocol version 1 [14], and ver-
sion 2 [15] developed by Nokia (formerly Ipsilon Networks) on
which our work is based; work being done in the Center for
Telecommunication Research at Columbia University (CTR)
[16] and work done at Information and Telecommunication
Technology Center (ITTC) at University of Kansas [17].

The Generalized Switch Management Protocol (GSMP) [14]
was the first protocol developed to control ATM switches. The
protocol was intended to be a part of the newly developed IP
Switching technology [18] and was optimized for it. GSMP
supports only basic operation like setting up and tearing down
virtual circuits, monitoring performance, etc. In terms of Qual-
ity of service, GSMP supports only fixed priorities and lacks
the more advanced QoS needed in an ATM network. The sec-
ond version of GSMP [15] addressed the problem of QoS in
the framework of Class Based Queuing (CBQ) [19]. This
model is appropriate for the Internet suite of protocols like
RSVP [20], but is still inadequate (and was not intended) for
ATM networks.

QoS extensions to GSMP have also been proposed by others.
In the context and framework of Xbind [21] an extension was
proposed [16] that uses the model of schedulable region [22] to
carry out admission control which is not compatible with the
specifications of the ATM Forum. Moreover, this approach
requires more than basic computational resources at the ATM
switch, which we believe should be limited. In, fact the switch
may have to carry out compute intense operations to respond to
some of the requests. The work by Evans et al.[17] define a
reasonable model of managing an ATM switch that provides
QoS guarantees, but proposes only an approach and not a com-
plete specification. None of these addresses fault tolerance
issues.

The rest of the paper is organized as follows. Section II con-
tains a discussion of design objectives, key assumptions and
goals behind ONSCI. To provide QoS support, the model of
switch’s resources and how the controller manages these
resources is very important. This is discussed in Section III,
which is the major contribution of this paper. Section IV details
our assumptions and approach to support fault tolerance. Vari-
ous messages exchanged between the controller and switch are
briefly introduced in Section V and the paper concludes in Sec-
tion VI.

II.  Design Objectives

A traditional switchof an ATM network is shown in Figure
1. It has two parts: A switching component, sometimes called

the fabric or the cross-connect, a set of tables containing
forwarding information and configuration data, and a proces
ing unit that embodies the control functions.

The ATM switch forwards its incoming cells to different out
put ports. This forwarding is done at very high speed using t
crossconnect. The entries in the forwarding table dictate wh
cell should be forwarded to which port. Depending upon th
switch design, the forwarding table may the stored explicit
or it may be translated into the state of the crossconnect. M
of the flow control, monitoring, statistics collection is jointly
done by the hardware and software components. Other op
tions, mainly network-wide ones (e.g., network routing), a
done solely by the processor. In a typical network, decisio
are made by the software running in the processor and th
stored in the tables to be used by the cross-connect. S
manipulation of the data structures is typically done by a tig
integration between the processor, the cross-connect, and
specific manner in which the data is stored in the tables.

As we indicated earlier, such an architecture is deficient
many ways. To overcome these deficiencies a new architec
is proposed as depicted in Figure 2. The architecture uses
notion of an ATMnodewhich is divided into two major parts:
The node controller (or switch controller) and the nod
switching subsystem (also referred to as “the switch”). Th
switching subsystem is essentially a very simple tradition
switch where the processor need have extremely limited co
putational power and a small interconnect-protocol (softwa
module with which it communicates with the controller.

The switch controller sends messages to the ATM swit
through a duplex interconnect. The ATM switch processes t
message and sends back the response to the controller.
switch is expected to have a limited capability processor, an
minimal operating system. Its performance characteristics m
be insufficient to handle a heavy weight switch control, and
there to perform only simple tasks such as translate the cont
ling commands given by the controller into the specific mann
in which they are stored in the tables. A design decision of o
interface is influenced by this approach: the switch control pr
tocol must be lightweight with minimal compute intensiv
operations.

The switch controller is a generic high performance compu

Figure 1: A traditional ATM switch
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ing platform. No restrictions are imposed on its architecture (it
may be a high end workstation for instance). It may run a
generic operating system, on top of which various network
control applications may be executing. For instance the signal-
ling application may exchange messages with its peers and set
up or teardown connections in its ATM switch.

The interconnection between the ATM switch and its con-
troller can either be through one of the regular port of the ATM
switch, or through a special port like Ethernet or any other
interface. ONSCI uses a regular ATM port for the interconnec-
tion. This makes the ATM switch uniform and enables a sim-
pler and richer fault recovery mechanism (Section IV).

There are some requirement from the switch to enable trans-
parent operation of an ATM node. Firstly, the switch must
divert all the handling of the special VCs to the attached con-
troller transparently. Special VCs are those designated to han-
dle signalling and control (according to the ATM Forum
Specification these carry VCI between 0 and 31 on VPI 0).
Because special VC exist on every link, the handling of the
special VCs must be done in such a way that allows the con-
troller to determine the port they belong to. In the reverse
direction, the controller must be able to send information on
any port carrying these VCIs. If a regular ATM port is used to
connect controller to ATM switch, as is done in ONSCI, all the
special incoming VCs can be diverted to the controller just like
a regular ATM connection.

Secondly, the controller should be able to manipulate the
switch’s tables. To that end it must be provided with the ability

to cause the tables and registers of the switch to reflect the
ervation of resources.

Thirdly, an interface should be given to the manageme
function of the switch, i.e., those functions that are used f
operations such as monitoring, management, configurat
control, link failure indications, and processing of OAM cells

Next, since the switch with its controller are used as a no
in an ATM network it is essential to provide support for stric
QoS guarantees (as defined by the ATM Forum) to the conn
tions passing through the node. It should also be possible to
more than one signalling protocol. For instance, in one confi
uration of the network, all the nodes may use PNNI signallin
whereas in another configuration OpeNet signalling may
used.

Fault tolerance is another desirable feature of the desi
The fabric is typically far more reliable than the rest of the sy
tem because it is logically simpler, may be equipped wi
redundant hardware and power supplies and traditionally
better tested. To maintain the reliability, the processor that
implemented in the switch is a very simple one, not runnin
any complex operation but just responding to requests from
controller. It is clear that the controller is the susceptible poi
with respect to reliability. With proper design, as we subs
quently show, one can achieve a higher reliability with th
architecture compared to the traditional architecture (whe
every software failure causes a complete nodal crash). O
design also allows to take the controller down in a grace
manner so as to allow upgrading or fixing the control softwa

Our main design philosophy is that the switch should b
able to continue operating, as much as possible (albeit w
limited capability), even with the failed controller and provid
ing a mechanism with which a standby controller (if presen
can gain the control of the switch. When a standby control
takes over the control of switch, it needs to recover the state
primary controller just before its crash. Primitives of thes
operations are included in ONSCI.

III.  Models and Structure

The switch control interface is defined in terms of a loc
protocol between the switch and its controller. The switc
interface design is based on conceptual modeling of the swi
behavior as well as the way it supports different QoS requi
ments. These models cover most of the switch implementatio
regardless of the way the basic switching function is impl
mented (e.g., space division or shared memory switching),
well as the ways buffers are managed across different conn
tions (e.g., input, output, internal or mixed buffering), and th
way QoS is provided (e.g., by using priorities, fair queuein
etc.). It also captures a broad range of the switch core con
architecture. The next subsections dwell on the individu
models involved; the detailed description of the message a
the behavior of the switch and the controller are given in [13

A.  The Setting

ONSCI is defined in terms of a message exchange betw

Figure 2: An ATM node
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the switch and a controller, and is not dependent on the physi-
cal implementation of this interconnection. This having been
said, the preferred implementation is through one of the
switch’s regular ATM ports. This implementation is much sim-
pler in terms of message exchange and versatility. In such a set-

ting the controller exchanges AAL5 encapsulated messa
with the switch over a (pre-configured) VC.

Another benefit of this setting is the ability to have a sing
controller control multiple switches as depicted inFigure

The switch controller controls switch-1 directly (i.e., the con-
trol VC indicated by the dot-dashed line) and controls switch-2
indirectly. This is implemented by having the second control
VC be configured such that it starts at the switch controller and
terminates at the processor of switch-2 (the dashed line in the
figure). Such a setting is beneficial if the controller has enough
power to control more than a single switch and, more impor-
tant, this can be a temporary setting when each switch has its
own controller but that of switch-2 failed and is now recover-
ing.

B.  Protocol Nature}

The interaction between the switch controller and the switch
is master-slave. The controller issues a command to the switch
by sending a request packet which is encapsulated in an AAL5
frame. The switch performs the request and send a response
message with a similar structure. Every packet contains a 32-
bit transaction identifier which must appear also in the
response message. This identifier is used by the controller to
match a response to a request and results in asynchronous oper-
ation namely that the controller dictates neither the speed nor
the order of execution in the switch. The protocol is essentially
a non-reliable transaction protocol that is, if a request (or the
response) got lost it is the responsibility of the controller to re-
issue the request. To simplify the processing, most of the
request messages are idempotent, hence the retransmission of a
request message doesn’t create any inconsistencies and can be
retransmitted either with a new or the old transaction ID.

As will be discussed later (Section V), resource management
messages are not idempotent and therefore need to be treated a
bit differently. In fact, these message carry another identifier
and the state of one packet has to be remembered by the switch
to allow for retransmissions. This ensures steady operation as
long as the controller doesn’t send more than one unacknowl-

edged resource management message.
Other than these messages, the switch asynchronously s

event messages to the controller to report certain conditio
like a link going down, in a manner similar to that described
[14].

C.  Connections

The most basic construct of an ATM switch is a connectio
which defines the handling of ATM cells. ATM cells arrive at
port carrying in their header the VP/VC identifiers that dicta
the port to which these cells should be switched and the qua
of service these cells should be afforded. The switch and
controller refer to individual connections by means of a
abstract data structure which is referred to as generalized
warding table.

An entry in the generalized forwarding table consists of a s
of input designators, a set of output designators, a traf
descriptor and some additional parameters as depicted in F
ure 4. An I/O designator is a triplet of port number, VP and V
identifiers and is the means by which the switch identifies ind
vidual data flows.

This representation means that every cell arriving at a
input port carrying the VP/VC identifiers (i.e., belonging to
certain input designator) will be switched toall the specified
output designators i.e., to every port of each output designat
each with appropriate VP/VC identifiers. A unicast connectio
has a single input and single output designator. A one to ma
multicast connection has one input designator and multip
output designators. A many to many multicast connection h
multiple input and multiple output designators. The traffi
descriptor follows the ATM Forum’s specification and include
traffic type and other parameters (see [13]). An entry in t
generalized forwarding table defines a flow in one directio
only. A bidirectional connection includes two entries, one

Figure 3: Control of multiple switches
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each direction. The port to which the controller is attached
treated as other ports and cells can be forwarded to and from it
just like other ports.

D.  Switch Parameters and QoS Model

The switch can support a set of predefined QoS classes. The
set can vary from the minimum set defined by the ATM Forum
(CBR, VBR-RT, VBR-NRT, ABR, UBR) [23] to a larger set
which is proprietary to an individual switch. The term class
identifies the traffic type, parameters relevant to the class and
defines the traffic descriptor. Within each class, different calls
may have different traffic behaviors like peak bit-rate and aver-
age bit-rate which is specified using the traffic descriptor of
that class. Other QoS parameters of calls (like delay, cell loss
rate) in a class may also vary and are also specified in the
descriptor. The QoS in this context means the service offered
locally by the switch (for example, additional delay introduced
by the switch). The end to end QoS of a call is obtained by
composition of local QoS of all its intermediate switch.

The switch has its own proprietary way to translate the class
identity and call rate into its internal switch tables. This trans-
lation is only known to the switch and may be hidden from the
controller. Sometimes this translation is easy as mapping the
given QoS class into a internal priority class and including rate
parameters for switch policing functions. Other more sophisti-
cated switches need to translate the rate parameters and insert
these translation into switch internal buffer management table.
The translation to the internal format is part of the tasks of sup-
porting ONSCI on the switch.

E.  Switch Accommodation Control Model

In addition to the ability of the switch to carry calls of certain
QoS and rates, we assume that an accommodation test mecha-
nism also exists by which the ability of the switch to accommo-
date an additional connection can be checked. In other words,
given some traffic state such as a set of calls which are already
established, can a new call of a given rate and given QoS be
accommodated? This definition of an accommodation mecha-
nism is by necessity specific to the switch and to the QoS
classes supported.

The decentralized signaling and control of the network calls
for two types of CAC procedures: local and remote. This
results from the manner in which connections are being set up.
At the source of a connection (where the user requested it) a
routing decision must be made, meaning that the source node
must be able to estimate the ability of every switch along the

computed route to accommodate the requested connection
refer to this as theremoteCAC test). Then, during set-up time
every node along the path must verify that indeed the
resources are available (we refer to this as thelocal CAC test).
Furthermore, there are two phases during the set-up time: fi
the node checks for resource availability and sets the resou
aside tentatively, and then, when all nodes along the path h
confirmed the availability of the resources a commitment
made.

The local CAC test described above, is done by the loc
controller in cooperation with the local switch. There are se
eral assumptions that must be made with respect to this t
The accommodation test must be conservative in the sense
whenever it indicates that a call can be accommodated, it w
be able to obey the QoS contract in the physical switch. On
other hand, the accommodation control test should be fai
accurate and not overly conservative to allow for efficient uti
zation of all the physical resources available.

The requirements of the remote CAC are quite differen
While the local CAC assumes detailed knowledge of th
switch’s state, it is unlikely that a controller would know th
specifics of any remote switch, nor is it likely to know the exa
set of existing calls at that node. To that end a generic c
admission control (GCAC) procedure is defined which allow
the remote node to make such an approximate calculation
the ATM Forum’s standard, this procedure takes the new c
rate parameters (SCR, PCR, MBS) along with three parame
(ACR, CRM, VF) which are advertised by the remote node f
each of its links, and results in a positive or negative test de
sion.

There are several immediate observations regarding t
approach. It is clear that the results of the GCAC procedu
should be conservative in comparison to, the more exact a
probably more detailed and switch specific, local accommod
tion procedure. This is to avoid connection setup failu
because the remote node overestimated the ability of lo
node to accommodate the call (based on its local accommo
tion procedure). Also, while the specifics of remote node a
unknown locally, the advertised parameters must be swi
dependent (in PNNI GCAC, the VF parameter is the on
switch dependent parameter). Therefore it is necessary for
local controller to calculate this parameter so that it can
advertised. This requires that the local controller be able
interrogate the local switch regarding availability of resource
we term this request for switch specific GCAC parameter
availability check.

The above observations have led to a CAC model who

Figure 4: The structure of generalized VC table

ID1 .... IDk OD1 .... ODm

Input Designators Output Designators Traffic Descriptor Misc Params

Port # VPI VCI
Input/Output Designator
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major components are shown in Figure 5. The translator block
converts commands which are expressed in terms of a general-
ized VC table entry to the switch internal formats and parame-
ters. In the reverse direction, the translator will make some of
its internal settings available to the controller. When written to
the switch tables and registers, switch resources arecommitted.
The accommodation test and availability checks are performed
with the accommodation oracle whose components are
depicted in Figure 6.

At the core of the accommodation oracle is a function or a
performance model which can estimate quite accurately
whether a new call of given QoS and rate parameters can be
accommodated. While such a procedure is an essential block in
any ATM system, it is the most switch dependent one. Even if
we use known models (such as one of the equivalent capacity
models of [23], [24] or [25]) there are necessarily some param-
eters in these models which are switch specific and capture, for
example, the amount and structure of buffering in the switch. It
is quite possible that the implementation of the oracle might
contain a proprietary switch model. In addition the oracle
maintains a current traffic base, whose structure is undefined
but which embodies the oracle’s view of existing traffic base.
To make an accommodation decision the oracle combines its
notion of the current traffic with the requested new connection.

With no further assumptions, the traffic base will consist of
the list of connections with their traffic descriptors and QoS
parameters. This will render the test and commit operations
very complex and time consuming, adversely impacting the
connection set-up procedure as we described earlier. To facili-
tate these operations we further assume that the accommoda-

tion control function is additive (or cumulative). This mean
that if A is the set of existing calls over a link of the switch an
c1 andc2 are two given calls, and ifc1 is feasible under link
stateA ∪ c2, thenc2 is feasible under the link stateA ∪ c1. This
implies that the list of individual connections need not b
maintained but that some form of aggregation would suffi
and that allocating and de-allocating resources can be ea
incorporated into the base. We also assume that the accom
dation control function is monotonic which means that ifc1 is
feasible under stateA andc2 has a rate description (and QoS
that is smaller than that ofc1, then c2 is also feasible under
stateA. With this assumption one availability check would su
fice to quickly determine the availability of resources for se
eral (small) connections.

As we indicated earlier, for each call, CAC test must be pe
formed on each of the nodes it traverses which means cond
ing a computation and interacting with the traffic base. Th
efficiency of this operation is highly dependent on the mann
in which it is implemented. We therefore devise a two tie
architecture as shown in Figure 7.

The first module of the architecture is a more conservati
accommodation oracleo1 which is based on a simpler switch
model (such as GCAC), is present on the controller. The s
ond module is a switch specific and accurate oracleo2. Any
CAC request in the controller is first presented too1. Accep-
tance of the call byo1 implies thato2 will also accept the call,
so the expensive CAC ono2 need not be performed. Only the
traffic base need be updated. This can be done asynchrono
(while the call may proceed). Ifo1 rejects a call, the controller
can determine that CAC needs to be performed byo2 and if the
result of this test is positive, the call is accepted and the tra
base must be updated.

Finally it is left to determine where these various function
are implemented. Since the depiction in Figure 5 is logical, n
physical, all possible combinations are possible but only fe
make sense.o1 is clearly implemented in the controller. As we
indicated, this helps reduce the call set-up latency. With resp
to o2 there are several options. If a good and accurate mode
the switch is available it would make sense to implemento2 in
the controller as well (as shown in Figure 8(b)). If an accura

Figure 5: Components of accommodation mechanism
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Figure 6: Structure of accommodation oracle
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Figure 7: Structure of the two tier architecture
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model of the resource computation is not available (e.g., the
manufacturer will not disclose it), the entireo2 must be imple-
mented in the switch.

Two configurations are shown in Figure 8. In the implemen-
tation shown in Figure 8(a), the oracle and the translator are in
the switch. This configuration allows the oracle to directly
access all the internal registers of the switch and thus make the
most accurate calculations. The configuration depicted in Fig-
ure 8(b) is advantageous in that the test and check functions in
which the oracle is involved are efficient since they do not
require any communication with the switch and can make the
full use of the computational resources at the controller. In this
case the oracle may have to retrieve switch-specific informa-
tion from the switch, for which theprivate primitive is pro-
vided in the interface. We believe the latter is the preferred
implementation.

IV.  Switch Reliability Support

The controller is very complex and has different software
components for network control, network management and
other functions. The switch processor, on the other hand, per-

forms very simple functions: mostly responding to the reque
from the controller. The switching fabric is traditionally bette
tested, may have redundant hardware and redundant po
supplies specifically to increase its reliability. Therefore, th
ATM switch controller is more prone to failures. It may cras
because of a bug in any of its components, or because o
power failure, or it may be intentionally brought down fo
upgrade or maintenance purposes. ONSCI therefore inclu
several primitives to enhance the controller’s availability.

The controller manipulates the state of the ATM switch
order to perform various network level functions like call se
up or teardown but is not involved in the normal data transf
operation. This means that the switch continues switching ce
according to its forwarding table entries, even after its contro
ler fails and hence connections that were successfully est
lished before a controller’s failure, are not affected by i
failure. Only network level control operations are affected.
particular, data on normal VCIs are switched as usual and d
on control VCIs which is typically forwarded to the controller
is discarded if the controller is not operational.

Each switch is connected to a primary controller which co
trols and manages the switch. It may also be connected to
or more secondary controllers which act as backup to the p
mary controller. When the primary controller fails, one of th
secondary controllers assumes the control of the ATM swit
and becomes its primary controller. At the system design le
there exist an issue of how many secondary controllers ex
(per node and per network) and where to locate them. Upon
primary controller’s failure the most important issue is locatin
the secondary controller: where is a secondary controll
located, how is it connected to the switch and how does
assume the control of the ATM switch? Once a secondary c
troller has assumed control, the question is how does it ass
ble the necessary state information required to work as
substitute of the failed controller? Once a failed controll
recovers, does it make its state consistent with the state of
network? After the crash of a controller while secondary co
troller was recovering, events like connection tear-down m
have happened as a result of which some connections (pas
through the switch of the crashed controller) which shou
have been terminated, may remain partially established, a
the question is how are these identified? In the next subsecti
we delineate ONSCI’s answer to these questions.

A.  Multiple Controllers of a Switch

In the simplest configuration, there exists no secondary co
troller. thus, when a controller fails it is rebooted and re
assumes control of the switch. Such an operation is typica
not fast enough for most operational network environment. T
simplest configuration that does include secondary controll
is a naive approach where a secondary controller is connec
to the switch via another dedicated ATM (control) port. Whe
the secondary controller detects the failure of the primary co
troller, it assumes control of the ATM switch. This is mad
possible by having the switch process requests from seve
ports (although only one would actually be active). In th

Switch Controller

Figure 8: Accommodation oracle implementation options

Proc/Tables

(a) Switch internal implementation

CAC
OracleXlator

XlatorCAC
Oracle

Switch Controller
Proc/Tables

(b) External implementation on controller
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approach, a switch must set aside at least two dedicated ports
for its controller (more if more secondary controllers are
present). In addition, two (or more) dedicated high perfor-
mance machines are needed for primary and secondary switch
controllers. The maximum number of secondary controllers
would be a static parameter limited by the number of ports
available in the ATM switch for controllers. Therefore this
naive approach is inadequate mainly because the backup con-
trollers are assigned statically to the ATM switches.

We propose a more dynamic approach, in which (redundant)
secondary controllers may be located anywhere in the network
and the binding between an ATM switch and its controller is
dynamic. This would allow sharing redundant controllers
thereby providing any desired degree of reliability.

We use a notion of acontrol pointwhich is a handle using
which the switch can be controlled. A control point at a switch
is defined by an I/O designator, i.e., the tuple (input port, input
VCI, output port, output VCI). A request message sent to an
input designator of a control point is interpreted by the ATM
switch as an ONSCI message. The response is sent to the cor-
responding output designator. Every switch has at least one
default control point, which is used by the switch to locate its
primary controller when the switch is powered up.

Control points may be created (or deleted) dynamically by a
controller whenever needed (subject to a maximum, which is a
configuration parameter). After the creation of a control point,
a controller sets up a bidirectional VC from the switch’s con-
trol point to a redundant controller somewhere in the network,
which then becomes a secondary controller of the switch. If a
switch hasN control points, then potentiallyN controllers can
have full control of the switch. In practice, only the primary
controller is active at a time. All other controllers are second-
ary and remain inactive till the primary controller fails. Note
that with this approach, only a virtual circuit (as opposed to a
dedicated port) is needed to connect a secondary controller to a
switch. The controller can be present anywhere in the network,
as long as a connection between the switch and controller can
be established.

Such a setting allows even more sharing. For example, it is
possible for a controller to control more than one switch as
indicated earlier in Figure 3. This means that an active control-
ler can act as a secondary for another node, and assume control
as necessary. If this secondary controller does not have enough
computational power this might not be a good long term solu-
tion but might be useful if this is only temporary, e.g., until the
original failed controller reboots.

After a secondary a controller assumes control of an ATM
switch, and becomes its primary controller, it may set up
another secondary controller. This involves locating a free sec-
ondary controller, setting up a logical path from the controller
to the ATM switch and creating a control point in its ATM
switch. The former two operations need support from higher
level protocols, whereas the latter needs just an interaction
between the controller and its ATM switch, which is provided
by ONSCI.

B.  Rebuilding State Information

When a secondary controller takes over the control of
ATM switch, it must first rebuild the state of the primary con
troller, then it should create an additional secondary control
(if possible) and finally advertise its presence in the netwo
and start working as the primary controller of the switch. O
these, the first one is the hardest. The relevant state of the
mary controller includes list of connections (in the generaliz
VC table), traffic descriptor and QoS of individual connection
and other information like link status of individual link, the
load on ATM switches etc. The secondary controller gathe
the relevant information by three methods: from period
broadcasts, by querying neighbors, and by querying switch.

The generalized VC table is most difficult to reconstruct.
can be reconstructed neither from broadcast information n
from neighbors. This is illustrated by the following example
Consider a four port ATM switch as shown in Figure 9
Assume that connection A arriving at input port 1 is switche
to the output port 3. Let another connection B at input port 4
switched to the output port 2. Also assume that both the co
nections have identical QoS parameters and traffic descript
By querying neighbors, a recovering controller, would on
have the information that there are two connections, one ar
ing at port 1 and other at port 4 and one departing at port 3 a
another departing at port 2. With this information it cannot b
determined whether incoming connection on port 1 is bei
switched to port 3 or to port 2. This information can only b
obtained from the state of switch’s interconnect.

Information about the state of the switch’s crossconne
along with the information from neighbors and broadcast info
mation is sufficient to reconstruct generalized forwarding tab
and data structures needed for other control purposes like
nalling. State of the traffic base of accommodation control or
cle is constructed by accumulating the traffic descriptor a
QoS of each connection to the traffic base. Recall that in S
tion III.E we assumed that the accommodation control proc
dure is cumulative. Therefore the connections can be
accumulated in any order to reconstruct the traffic base.

The state information thus constructed reflects the state
the controller at the time it crashed. Some events (like conn
tion teardown) may have occurred between the crash and s
sequent recovery. Thus, the recovering controller needs
carry out corresponding update in its state and possibly so
additional operations, described next.

Figure 9: Problem in reconstructing forwarding table
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C.  Partial and Zombie Connections

It is possible that due to unforeseen transient circumstances,
the state of the current node is incompatible with its neigh-
bors’. For example, if a controller crashes during the operation
associated with a connection teardown. In such cases a connec-
tion teardown message will not be able to traverse the entire
connection resulting in a partial connection which should ide-
ally have been completely torn down. These partial connec-
tions may unicast as well as multicast. Formally, a partial
connection is a connection such that there is one neighboring
controller which believes that the connection exists and there is
another which believes it has been closed. A zombie connec-
tion is one where none of the adjacent controllers believes that
the connection exists.

The controller must teardown partial connections for which
either all the input branches have been deleted, or all the output
branches have been deleted. In addition, it must also update its
current traffic base. If only some of the input and output
branches have been deleted, the forwarding table must be mod-
ified appropriately and the traffic base should be updated. For
zombie connections, the forwarding table entries must be
removed, and the current traffic base must be updated.

The deleted input and output branches of a partial connec-
tion can be figured out from information supplied by the neigh-
boring controllers. Thus the controller can initiate connection
teardown if needed. In order to update the current traffic base,
the controller needs traffic descriptor and QoS parameters of
connections. This information may also be obtained from the
neighbors.

Zombie connections are more difficult to deal with. Their
existence can be identified but their traffic descriptors and QoS
parameters may not be recoverable. Thus it is not easy to
reclaim the resources allocated to zombie connections and
update the current traffic base. There are several possible
approaches to solve this problem.

The most accurate one is rebuilding the traffic base from
scratch. Once the controller has all the information regarding
the active connection a new traffic base can be built which, of
course, would not include the resources previously allocated to
the zombie connections. This operation is costly in terms of
computation and time and may not be practical in certain cir-
cumstances since it delays the recovery process.

In another approach, a higher layer protocol is used. Such a
protocol maintains the traffic descriptor and QoS information
connections even after a connection terminates. The duration
for which this information is maintained is slightly more than
the time taken by a secondary controller to recover. This infor-
mation is later supplied to the recovering controller on request.

Another, more practical alternative, is to record parameters
of very large connections separately, in a recoverable fashion.
In this way we guarantee that zombie connections would not
tie up too many resources, and the recovery can be done fast.
Thereafter, when the time and computation resources are avail-
able, a complete traffic base reconstruction can take place. To
implement this capability we use a small storage in the switch
in which the controller can store certain information (see the

General command described in Section V).
The primitives in ONSCI protocol provide support neede

by the controller from the switch in order to make the netwo
tolerant to faults in the controller. With proper design of proto
cols at higher layer, and support from ONSCI it is possible
build a fault tolerant network.

V.  Basic Operations

The ONSCI switch interface is modeled as an extension
the GSMP [14]. As is described in the previous sections t
extensions made are in particular at the call model, QoS s
port and fault tolerance. We leverage as much as possible
GSMP formats.

In terms of call model, we consider the most general types
connections as described in Section III.C. In terms of QoS,
support a very general model in which the switch and t
accommodation control mechanism may support calls w
large number of QoS values. Each connection may request
traffic descriptor and QoS value. This is different from [14], i
which only priorities (but no admission control) are supporte
and [26], where each class also identifies the (single) rate
which a connection may operate. It differs from [27] in tha
only a single control platform is considered. Our gener
admission control model is derived from the PNNI standa
[23], as OpeNet advertises the same parameters. However
availability check can be easily modified to include addition
parameters or different GCAC policies.

We divide the menu of all commands to several familie
which we briefly describe in the following. Interested reade
are referred to [13].

Resource Management

This group of commands deals with the management of
resources in the switch regarding their allocation and assi
ment to the individual connections. As such they are typica
associated with specific ATM connections that specify certa
QoS and traffic descriptors as per the definition of Secti
III.C. This is the only group that contains commands that a
not idempotent (as mentioned in Section III.B). Therefore ca
must be taken to ensure that there is no inconsistency due
loss of a resource management message.

In order to achieve consistency, the controller queues
resource management request if response to an earlier reso
management request has not arrived. The new request is
only after response to all the earlier requests are obtained
response is not received within stipulated time, the control
retransmits the request. This is essentially a stop-and-wait p
tocol. Thus, at any time, the controller has at most one o
standing unacknowledged resource management message

The controller maintains a resource sequence number wh
is carried by every resource management request message
is incremented after a request is sent. The response to a req
must have the same resource sequence number. The reso
sequence number is used by the switch to identify duplica
requests due to retransmission. The switch maintains
9
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expected resource sequence number, which is one greater than
the resource sequence number of last successfully processed
request. The switch also keeps a complete copy of the last
response sent. If the switch receives a request with sequence
number one less than the expected, it is a retransmission of the
previous request. In this case the switch re-sends the last
response which it has stored. In case the resource sequence
number of a request is equal to the expected one, the switch
processes the request as a new one and sends the response. The
switch then stores the new response in place of the old one and
increments the expected resource sequence number. If none of
the above conditions are true, then the request message is
ignored.

This group of commands includes thenew connectioncom-
mand which is used to set up a new connection. The request
includes a representation of a generalize VC table entry, delin-
eating the ports, the VCIs and the associated traffic descriptors.
The group also includes thedrop connectioncommand which
is used to completely erase all traces of an existing connection
and thechangecommand which is used to alter the QoS
parameters associated with the connection. Commands also
exist for adding or dropping input or output branches to an
existing connections thereby providing full support for a
dynamic multicast environment.

The commandget CAC parametersis used to get the switch
dependent parameters such as VF, ACR and CRM. These
parameters are used in the GCAC model and are used for esti-
mating if a remote node can accommodate a call and are peri-
odically advertised by a switch as described in Section III.E.

Configuration

This family of commands allows to receive configuration
reports from of the switch or its ports. Theswitch configuration
commandreports the various global capabilities of the switch.
This command would typically be invoked only during start-up
of switch or controller, for example after recovery from crash.
The port configuration commandsimilarly reports the static
configuration information of the specified port and is used
when only a single port (rather than the entire switch) recover.

VP Management

VP management is an important part of ATM nodes, espe-
cially when used for telecommunications purposes. VPs have
traditionally much longer lifetimes so it is not important to be
able to manage every detail of the VP separately. consequently,
we chose to manage the VP as a whole and provide primitives
to establish and terminate VPs. The ONSCI supports a variety
of VP types (unicast, multicast, etc.) each with its own allo-
cated resources.

Port and Switch Management

These commands allow to manage dynamic behavior of the
switch and its ports. Theport managementcommand allows a
port to be brought up, taken down, brought in loopback mode
etc. The switch managementcommand is used to manage
dynamic behavior of the switch and is similar to that of [14].

Events

This family of commands allows the handling of events th
happen at the switch and have to be reported asynchrono
by the switch to the controller such as link failure and recove
While in general the ONSCI uses a master-slave approach
which the controller issues a request and the switch respon
here the switch initiates the report. This is the only family o
commands operating in this direction. We have adopted h
directly the model used in GSMP[14].

Fault Tolerance

After failure of a switch controller, either a standby contro
ler gains the control of the switch and performs recovery, or t
primary controller restarts from scratch and attempts to reco
as discussed in Section IV. In either case, the fault toleran
commands provide the minimal state information at the switc
necessary for recovery.

An important observation to be is the amount of state info
mation which is typically substantial. The controller mus
maintain state for each port and for each connection of wh
many thousands might be active at any time. There are sev
concerns here. First, the switch may not have enough availa
memory to assemble a message containing the entire infor
tion it must pass to the controller. Second, the amount of info
mation might exceed the size of an AAL5 packet which mea
that the information cannot be transported in a sing
exchange. All this must be coupled with the approach that t
switch must remain simple and the operations it perform
should minimize the amount of computation.

Our approach is that of modularization. The controller fir
acquires configuration information: such as number of po
and list of active ports. Then the controller requests, for ea
port, the list of input VPs and output VPs (which is done wit
theget input VP listandget output VP listcommands). There-
after, for each port and each VP, the list of VCs is requested
theget input VCandget output VCcommands. Lastly, given an
input VCI. a VPI, and port number, theget forwarding infor-
mationcommand reports a list of output VCs and port numbe
to which cells from the specified input VC and port, are fo
warded.

Modularizing the request reduces the amount of informati
that is reported for every request, but does not guaranteed
the response to every request can fit into a single message
continuation mechanism is devised for that purpose. When
list is requested, such as a VC list, we assume that these
ordered by the switch in a certain, unspecified way (e.g., so
random order in memory). When the switch responds with
partial response it provides the controller with an index (
handle) which, if included in a subsequent request of the co
troller, will cause a continuation response to be generated.

Beyond the state recovery commands mentioned abo
ONSCI provides management of the control points. Theadd
control command creates a new control port specified by inp
port, input VCI, output port and output VCI for the switch. Th
control port allows a standby controller to control the switc
In addition to responding to its earlier controller, the switc
10
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also responds to any request on the new control port. In other
words, the switch processes all requests sent to the input port
and VCI of a control port and sends the response on the output
port and VCI of the control port. This command is typically
issued during start-up when the primary controller sets up a
backup controller for the switch. During the recovery phase the
backup controller may use this command to add a new backup
controller since it has become primary controller from backup.
The delete controlcommand removes a control port. This is
typically done during recovery, to reclaim control port of the
failed controller.

Theadd command logcommand redirects all the subsequent
requests along with their responses to the specified output port
and VCI. This output is monitored by a standby controller
which constructs the state of the primary controller using the
log of commands and their responses. This provides an alterna-
tive method for recovery after the failure of primary controller.
The delete control logcommand is used when the redirection
of requests and responses to a particular port and VCI is not
needed. Like other commands for fault tolerance, both these
commands are typically used either during start-up or during
recovery phase.

Performance Monitoring

Upon request the switch will convey to its controller a vari-
ety of information regarding the dynamics of switch and the
individual ports. These statistics can be obtained on a per port
basis or on per VP basis or per VC basis.

General

A small number of commands are provided for other, miscel-
laneous operation. We assume the switch has a very small
amount of memory which it makes available to the controller.
The controller can store and retrieve information from this
storage without the switch interpreting it. For example, the
controller may store there certain time stamps that might be
useful for a secondary controller after the primary failed or cer-
tain GCAC parameters.

It is well understood that an interface such as ONSCI cannot
possibly be comprehensive, given the large variety of switches.
It is also recognized that some switches can perform certain
operation for which there are no ONSCI command available or
which require several commands. For that purposes ONSCI
defines theprivatecommand which uses the interface and mes-
sage exchange mechanism to invoke and report the results of a
privately defined operation.

VI.  Discussion and Conclusion

We have proposed the OpeNet Switch Control Interface
(ONSCI), a new open ATM switch control interface based
upon principles of distributed systems. ONSCI is switch inde-
pendent and supports a variety of primitives to allow many net-
work control platforms to be implemented on top of it. We
chose the ATM Forum’s traffic management model and the

OpeNet signalling as an example.
Two innovative contributions are included in ONSCI: (1

support for a resource management scheme for the provisio
general QoS that is both switch and signaling platform ind
pendent (2) support for a fault tolerant operation in the vein
increasing availability. Our design assumes limited switc
capability in terms of the amount of memory and particular
CPU power. The idea behind this design is to allow simp
(read: stable and reliable) processor as part of the switch.

One of the major problem in designing this interface wa
how to identify resources of the switch allocated to a particu
connection. Imagine a situation when a branch is to be adde
an existing multicast connection. In order to compute th
amount of additional resources needed for this purpose,
resources already allocated (buffers, bandwidth, etc.) must
known. The CPU of the switch performs only very simpl
operations and is incapable to storing this resource mappi
The controller cannot store this information either as th
amount and structure of switch resources is switch spec
which cannot be generalized.

Resource identification has other benefits also. If the swit
resources allocated to a particular connection were identifiab
all the commands in the resource management group co
have been made idempotent, simplifying the protocol. T
problem of reclaiming resources from zombie connectio
would have become much easier.

Explicit resource identification requires enormous boo
keeping in the switch (and a more complicated switch mode
It also needs significant software on the switch. This conflic
with our original goal of decoupling software and hardwa
components of a traditional ATM switch, distributed imple
mentation of these two components, and open switch con
interface. Despite the advantages of explicit resource ident
cation, we decided not to opt for it. The trade-off in favor o
simple switch software is desirable.

We solved the resource identification issues in a variety
ways. In terms of the resource management commands,
chose to implement those in a more reliable manner wh
includes specific ACKs for each request. In terms of resour
searching, we require that all messages that refer to resou
should carry enough information to allow the switch to infe
rather than compute or search, the resources involved (e
including all I/O designators in identifying resources of a mu
ticast connection). This in addition to the assumption th
resource accommodation is monotonic and cumulative.

The inability to identify resources impacts the recovery pr
cess after failures. To that end we provided primitives that w
allow to reconstruct the state of a failed controller, consideri
the fact that a large amount of information can be acquir
from neighboring controllers.

ONSCI was implemented and integrated with the OpeN
control platform. Pure ONSCI implementation on an ATM
switch was not available, but we had access to GSMP-capa
ATM switch. We wrote a thin layer of software which convert
ONSCI message to GSMP messages and GSMP respons
ONSCI response. Using this basic functionality of ONSCI, lik
connection management, statistics etc., were successf
11
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