
Hybrid TCP-UDP Transport for Web Tra�c

Israel Cidon, Amit Gupta, Raphael Rom and Christoph Schuba

Sun Microsystems Laboratories

901 San Antonio Road

Palo Alto, CA 94303, USA

Abstract

Most of the web tra�c today uses the HyperText Transfer Protocol (HTTP), with Transmission

Control Protocol (TCP) as the underlying transport protocol. TCP provides several important ser-
vices to HTTP, including reliable data transfer and congestion control. Unfortunately, TCP is poorly
suited for the short conversations that comprise a signi�cant component of web tra�c. The overhead
of setting up and tearing down TCP state amortizes poorly for these small connections. Moreover,
emerging modern web server systems employ HTTP redirection for server load-balancing and con-
tent distribution; such schemes require setting up (and tearing down) multiple TCP connections for
servicing a single client request.

We have designed and analyzed a hybrid scheme to address these issues. The scheme uses either
TCP, or the User Datagram Protocol (UDP) as the underlying transport protocol for carrying web
tra�c. UDP is used for short transfers (including HTTP redirection), while TCP is used for all other
transfers. In this manner, we avoid the extra TCP overhead for short connections, but still bene�t
from the reliable delivery and congestion control that TCP provides. We ran trace-based simulations
to quantify the e�ects of various network parameters (i.e., packet loss rates) on the performance of the
hybrid scheme. We observed performance gains exceeding 20-25% with HTTP/1.1-style persistent
connections, and over 40-50% without persistent connections. These gains can be improved with
further performance optimizations that we describe.

1 Introduction

As the World Wide Web (WWW) and other Internet applications, such as real-time audio and video
become more and more popular, both the Internet itself and the most popular sites are su�ering from
severe congestion. This congestion is perceived by users as service delays at best, and as a lack of service
at worst.

The implications for companies depending on the availability of the service are grave: Connection

timed out is read as Closed for business. Given the revenue-generating and often mission-critical service
that many web sites provide, high availability is of great importance and desirable to be maintained,
even in the presence of multiple system failures.

Most of the web tra�c today uses the HyperText Transfer Protocol (HTTP). Traditionally, HTTP
uses the Transmission Control Protocol (TCP) ([17]) as its underlying transport protocol. TCP provides
several important services to HTTP, including reliable data transfer and congestion control. Unfortu-
nately, TCP is poorly suited for the short conversations that comprise a signi�cant component of web
tra�c. The overhead of setting up and tearing down TCP state amortizes poorly for these small
connections.

Many web sites today use a variety of approaches, including server and content replication and
distribution, to improve service latency and reliability. Such features are best served if the HTTP
address (URL) is looked at and processed before the �nal destination server is selected. Current HTTP
redirection solutions require tearing down and setting up multiple TCP connections. The redirection
operation itself is a short lived HTTP connection. Several commercial products such as the BrightTiger1

and Hopscotch2 use HTTP redirection for content distribution at the added expense of setting up
multiple TCP connections.

Others avoid the overhead associated with HTTP redirection but consequently su�er from other
limitations such as the need to fully replicate the server content (if URL is not looked at before
the destination is selected) or the need to transfer TCP connections with their associated states be-
tween servers (see for example Resonate at http://www.Resonate.com/ or the Cisco LocalDirector at
http://www.cisco.com/warp/public/751/lodir/).

This paper takes a di�erent approach and tackles the problem at its roots. We propose a dynamic
transport protocol selection for reducing service latency, tra�c overhead, and server load by giving
services a dynamic choice which transport protocol to use. Today, web services usually use a single
transport protocol, namely TCP, for all tra�c; dynamically selecting the underlying transport protocol
(e.g., TCP or UDP) can substantially improve service latency and reduce network tra�c and server
load. Our approach is conservative in the sense that we analyze and test our proposal against current
web traces. The rationale is that in the future load, content and geographical distribution of servers
within a service provider domain (say a video on demand or network computing services etc.) will
further increase the need for redirection operations. Similarly, the increasing use of style sheets as well
as the increasing use of cache validation also lead to a large amount of short HTTP transactions. This
will emphasize the overhead reduction even further.

The mechanisms discussed in this paper apply to many client-server protocols; we concentrate on the
HyperText Transport Protocol (HTTP) ([4]) as the canonical example.

Available Internet tra�c traces ([5]) show that a large part of web tra�c consists of short HTTP
transactions: about 40% of web transfers can �t in a single 1.5 KB datagram, the size of an Ethernet
maximum transmission unit (MTU) and approximately 63% will �t into two datagrams. In the case
of a single MTU, using TCP requires 4-5 times the number of packets compared to the use of UDP.
TCP setup also requires more complex state machine operations and setup of data structures at both
the server and the client. Consequently, using UDP reduces network tra�c as well as client-observed
latency.

This hybrid TCP-UDP scheme combines the best of both worlds: for short transactions it bene�ts
from stateless UDP's low overheads; on the other hand, for large data transfers, it obtains the desired
reliability, resequencing, and congestion control from TCP. The hybrid scheme is attractive because it
only requires application-level changes, while the operating system kernel code can remain unchanged.
Finally, the scheme is incrementally deployable in the current Internet and is fully compatible with the
installed base.

Previous research investigated the cost of high TCP overhead for small connections. TCP for Trans-

actions (T/TCP) [1] was developed as a transport protocol for request/reply type message passing
protocols. For web tra�c, T/TCP behavior and performance should be similar to that of persistent-

1http://www.brighttiger.com/
2http://www.hopscotch.com/

HTTP: the �rst connection between a pair of hosts requires a three-way handshake while successive
connections avoid this overhead. Heidemann et al. [6] relies entirely on using UDP augmented with
adaptive retransmission and congestion control mechanisms, thereby mimicking the behavior of TCP
[10]. The disadvantage of such a scheme is that we need to develop yet another complex protocol
with reliability, resequencing and congestion avoidance, duplicating the long tedious process of TCP
development.

Previous research investigated the cost of high TCP overhead for small connections. We address
here two of these schemes: T/TCP ([1]) and HTTP Performance modeling research by Heidemann,
Obraczka, and Touch ([6]).

Another motivation for the design of the hybrid scheme is to guarantee that our scheme will preserve
the \TCP friendly" property. This means that it should not attempt to bene�t a particular service
(in terms of better response time or throughput) at the expense of the global network or other well
behaving users. We maintain the TCP congestion control for all long term connections. On the other
hand, since TCP congestion control is not e�ective for short lived transactions (because of the lack of
proper round trip adaptation periods), the use of UDP in these instances does not make a di�erence in
that respect.

TCP for Transactions (T/TCP) [1] was developed as a transport protocol for request/reply type
message passing protocols. It avoids the overhead that explicit connection setup and tear-down phases
impose for small transactions. The designers of T/TCP de�ned a reliable request/response handshake
with exactly one packet in each direction. T/TCP is designed as a backward-compatible extension to
the TCP protocol. For web tra�c, T/TCP behavior and performance is similar to that of persistent-
HTTP: the �rst connection between a pair of hosts requires a three-way handshake while successive
connections avoid this overhead. T/TCP's requirement for a kernel-level implementation is the primary
reason why T/TCP is not widely available[11].

Heidemann et al. ([6]) evaluates the performance of HTTP over UDP. Unlike our scheme (which
uses TCP if needed), [6] relies entirely on using UDP as the transport protocol. UDP was augmented
with adaptive retransmission and congestion control mechanisms, thereby mimicking the behavior of
TCP similar to the Asynchronous Reliable Delivery Protocol (ARDP) ([10]). The disadvantage of such
a scheme is that we need to develop yet another complex protocol with reliability, resequencing and
congestion avoidance duplicating the long tedious process of TCP development. Moreover, if this is not
a kernel-level implementation it might result in a slower and less e�cient operation.

The remainder of this paper is organized as follows. Section 2 provides background material and
motivation. Section 3 explains our hybrid TCP-UDP scheme and discusses its strengths and weaknesses.
In section 4, we evaluate the performance of this hybrid scheme via simulations. We conclude in section 5.

2 Background

In the following we brie
y describe the various transport protocols that are involved in our design,
e.g., TCP, UDP and HTTP.

The Transmission Control Protocol (TCP) ([17]) provides a reliable, connection-oriented data stream
delivery service. This reliability comes at a cost, though; TCP requires a three-way handshake for
connection setup, normally a graceful connection tear down and a datagram acknowledgment process.
In addition, its reliability, sequencing and congestion control mechanism introduce extra computation
overhead as well. While the setup and tear down costs amortize well over long connections, they

are expensive for short connections. Its adaptive congestion control, general resequencing and ARQ
mechanisms are excessive for a single or few datagrams exchange.

The User Datagram Protocol (UDP) ([14]) provides a best-e�ort datagram service and therefore can
operate in a more e�cient manner than TCP. For example, UDP requires no connection setup or tear
down, no acknowledgments, and little protocol state machine processing. On the
ip side, UDP does
not o�er any of TCP's reliable delivery or congestion control behavior.

HTTP de�nes a request/reply protocol, where client applications can request data from servers by
providing a Universal Resource Locator (URL). HTTP is used to address many di�erent types of
resources, including text, image, audio, video, executable �les, index search results, and database query
results.

TCP: SYN

ACK

HTTP GET request

ACK

FIN+ACK

SYN+ACK

ACK

ACK

HTTP reply

FIN+ACK

Client Server

Figure 1: HTTP GET request and reply over TCP.

Figure 1 illustrates a typical packet exchange for an HTTP GET request between a client and a server.
Time progresses from the top of the �gure downwards. First, the client establishes a TCP connection to
the server with the three-way handshake (�rst three packets, labeled SYN, SYN+ACK, and ACK). Once
the connection is established, the client transmits the GET request to the server. The GET request
contains a URL to be fetched and served (labeled HTTP GET request). The server acknowledges the
receipt of the request packet (labeled ACK) before it replies with the requested resource (labeled HTTP
reply). The �nal four packets (FIN+ACK and ACK in both directions) are TCP control packets for
graceful connection shutdown.

In Figure 1, only two packets seem to be useful (i.e., carrying data): one is the HTTP GET request,
and the other one the HTTP reply. All other packets represent TCP overhead. Under the HTTP
protocol Version 1.0, each transfer requires a separate TCP connection. HTTP Version 1.1 introduced

persistent HTTP connections to address this problem. Figure 2 illustrates persistent HTTP: multiple
HTTP GET requests (and their responses) use the same TCP connection.

TCP: SYN

ACK

1st HTTP GET request

SYN+ACK

ACK

HTTP reply (for1st request)

Client Server

2nd HTTP GET request

ACK

HTTP reply (for2nd request)

4th HTTP GET request

3rd HTTP GET request

HTTP reply (for3rd request)

Figure 2: Example of multiple HTTP GET requests and replies over a persistent HTTP connection.

As of end-1998 the use of persistent HTTP is limited by several factors. About 50% of installed HTTP
browsers and a large portion of HTTP servers are not capable of using persistent HTTP (Note: citation

missing: Amit?). Note: Should we mention P-HTTP use policies here, too?

One may expect that all pages for a web site (i.e., with a common server identi�er) reside on the
same server. For example, the URLs http://www.sunlabs.com/people/index.html and the URL
http://www.sunlabs.com/research/index.html share the server identi�er www.sunlabs.com and we
may expect that both URLs will be fetched from the same web server. In practice, many web sites are
set up to use di�erent servers for di�erent URLs. In the example described above, the �rst URL may be
served by the server www.people.sunlabs.com while the second is served by www.research.sunlabs.

com. We call this approach heterogeneous content provisioning.

A site may be organized in this manner because providing the client with a common site access
address is appealing for administrative and business reasons. Furthermore, the nature of the data and
its amount might call for its distribution (static or dynamic) among multiple servers.

There are many reasons why a site may be organized in this manner. First, providing the client with
a common site access address is appealing for business reasons. It is easier for clients to remember a
single commonly used site name it also gives the service provider the
exibility to index his web services
independently of their physical location. Second, the nature of the data and its amount might call for its
distribution (static or dynamic) among multiple servers (for example, video clips might be served best
by a customized video server etc.). Such heterogeneous provisioning may be dictated by administrative
concerns (for example, multiple administrative domains). Also, a web site may include content from
multiple sources and of variable popularity - it may not be attractive to move all content to a single
server, or to several fully-replicated servers.

The HTTP REDIRECT mechanism (illustrated in Figure 3) is used to support heterogeneous content.
HTTP server A hands o� HTTP requests from clients to server B by sending a REDIRECT as a response
to an HTTP GET request. Note that the HTTP REDIRECT is part of a short HTTP transfer. Using
TCP for an HTTP request{HTTP REDIRECT pair requires at least 7 packets (usually 9-10 packets),
while two packets su�ce if UDP is used as the underlying transport protocol.

Client Server A

TCP: HTTP GET request

HTTP REDIRECT to Server B

Server B
TCP: HTTP GET request

HTTP reply

Figure 3: HTTP REDIRECT by Server A to Server B.

We already mentioned that TCP transport is expensive for small payloads. Here is another example
of a scenario in which UDP is a su�cient and more e�cient choice for HTTP data transport than TCP.
Section 4 then presents our analysis and simulation results supporting this claim, even in the presence
of packet loss and corruption.

Although resources have uniform identi�ers (URLs) and share a common pre�x, they are usually
not accumulated at a single location. Therefore, most HTTP servers operate as an intermediary, single
point of access that retrieves the requested resources from a variety of other services. For example,
if a requested �le is not on the local �le system of the HTTP server, before it can be served to the
HTTP client, it �rst needs to be retrieved through a network �le system. Database queries (results)
are relayed by the HTTP server to (from) the appropriate database system. There are often multiple
dedicated servers used behind the uniform front end of the HTTP server. This discussion illustrates
how resources are often not arranged according to the views presented to clients. Rather, resources
are distributed according to administrative structures and control (e.g., �le systems that represent

project �le space of di�erent engineering groups), functional criteria (e.g., customer database queries
are processed by the database server, whereas �les are served by a network �le system), or because their
collective (Note: Beware, the Borg!) size exceeds storage available locally.

Instead of replicating and moving data to a single HTTP server, one can imagine using multiple
servers each located closer to a subset of the data. Servers would serve only the data that is locally
available to them. Files would be organized preserving administrative and organizational structures.
We call this approach heterogeneous content provisioning. Its implementation requires the availability
of multiple HTTP servers that provide to clients the illusion of a single service. The HTTP protocol
includes a protocol message for the redirection of HTTP requests to other servers. It is called an HTTP
REDIRECT and illustrated in Figure 3. HTTP server A hands o� HTTP requests from clients to
server B by sending a REDIRECT as a response to an HTTP GET request. Using TCP for an HTTP
request{HTTP REDIRECT pair requires a total of at least 7, and usually 10 TCP packets. Using UDP,
two datagrams are su�cient. Additionally, the overall number of bytes sent over the network is smaller
with UDP.

3 Design

A good solution for reducing the TCP overhead for small connections should have the following
characteristics:

� transparency to users,

� backward compatibility,

� opportunity for incremental deployment, and

� low runtime overhead in space and time (if any)

3.1 Proposal: Hybrid TCP-UDP Transport

One approach is to use UDP instead of TCP as the transport protocol for HTTP tra�c. However, in
the presence of unreliable network layer communications, reliability services and congestion management
need to be added to UDP to make this a viable proposal. We decided against putting such functionality
into UDP.

Instead, we use a hybrid approach where short connections are served using UDP and large connec-
tions use TCP as its transport protocol. In this manner, the TCP overhead for short connections is
avoided, but the bene�ts from TCP's well tuned timers, retransmission, congestion control, and error
recovery mechanisms are preserved. In this scheme, clients �rst attempt to use UDP as their transport
protocol, and fall back to using TCP, if UDP turns out to be the wrong choice for the requested URL.
The fall back mechanism provides the following guarantees:

� If any of the initial UDP packets are lost, the loss is gracefully handled by switching to TCP.

� If the contacted HTTP server does not implement the hybrid scheme, the client will re-try with
TCP.

Figure 4 presents this algorithm in more detail. A hybrid capable HTTP client sends the HTTP
GET request using UDP as the underlying transport protocol. The client starts a timer at the time the
request is sent.

Start timer

Send HTTP request over UDP port

UDP input or expiration

Content of UDP

Use TCP

Timer
expirationUDP port input

Retry
w/TCP

HTTP
reply

of timer?

reply

Process
HTTP reply(retransmit HTTP request)

Figure 4: Algorithm executed at HTTP client application to receive HTTP service over either TCP or
UDP.

When the server processes the client's request, it can choose from one of the following alternatives:

1. If the response is small enough (say, it �ts into one datagram), the server returns it using UDP.
Small web pages and most cache validation and HTTP REDIRECT responses fall into this cate-
gory.

2. The server can ask the client to re-try using TCP if the reply is too large to �t into a single UDP
packet. At this time, the server can also ask the client to try a di�erent URL. This approach is
useful if the server generated the reply dynamically and attempts to avoid generating the reply a
second time for the subsequent re-try with TCP. This extension can be implemented with a new
HTTP return code.

At the client side, one of the following three events can happen:

� The client gets a response from the server. If the reply contains the desired HTTP reply, the client
processes the data. If the server asks the client to re-try (a di�erent URL and/or using TCP), the
client does so.

� If the server does not handle HTTP packets sent over UDP, the client may get an ICMP (Internet
Control Message Protocol [16]) error message (destination unreachable/protocol unreachable). In
this case, the client should re-try using TCP.

� If the timer expires, the client should re-try with TCP.

Figure 5 illustrates the packet exchange in case the timer expires. This time-out feature provides
reliability and backwards compatibility with servers that do not use the hybrid TCP-UDP scheme.
We recommend that this timeout interval be set the same as the corresponding TCP initial timeout

T
C

P
: S

Y
N

A
C

K

H
T

T
P

 G
E

T
 request

S
Y

N
+

A
C

K

C
lient

S
erver

U
D

P
: H

T
T

P
 G

E
T

 request

timeout
TCP retry

F
igu

re
5
:
Im

p
licit

fall
b
a
ck

fro
m

U
D
P
to

T
C
P
.
O
n
e
of

th
e
U
D
P
req

u
est/resp

on
se

p
ackets

got
lost

or
th
e
server

is
n
ot

U
D
P
cap

ab
le.

in
terva

l.
A
s
th
e
u
p
gra

d
ed

clien
ts

ca
n
w
ork

w
ork

w
ith

servers
th
at

d
o
n
ot

im
p
lem

en
t
th
e
h
y
b
rid

sch
em

e,
th
is
fall-b

ack
m
ech

a
n
ism

su
p
p
orts

g
rad

u
a
l,
in
crem

en
tal

d
ep
loy

m
en
t
in

th
e
In
tern

et.

F
igu

re
6
d
em

o
n
strates

th
e
p
ack

et
ex
ch
an
ge

w
h
ere

th
e
serv

er
req

u
ests

th
e
clien

t
to

resen
d
th
e
H
T
T
P

req
u
est

ov
er

T
C
P
.

F
or

h
etero

gen
eo
u
s
co
n
ten

t,
th
is

h
y
b
rid

sch
em

e
p
resen

ts
an
oth

er
in
terestin

g
op
tion

(b
y
p
assin

g
th
e

clien
t
co
m
p
letely

);
a
s
th
e
H
T
T
P
server

receives
H
T
T
P
req

u
ests

(w
ith

th
e
U
R
L
)
w
ith

ou
t
an
y
in
itial

state
esta

b
lish

m
en
t,
th
e
H
T
T
P
req

u
est

ca
n
b
e
forw

ard
ed

an
d
serv

ed
b
y
an
oth

er
serv

er
(w

h
ich

m
asq

u
erad

es
a
s
th
e
�
rst

server
in

its
resp

o
n
se)

w
ith

ou
t
fu
rth

er
clien

t
in
volv

em
en
t.

F
or

h
eterog

en
eo
u
s
con

ten
t,
o
u
r
h
y
b
rid

sch
em

e
o�
ers

a
n
ew

m
ech

an
ism

to
red

irect
req

u
ests;

th
is
n
ew

m
ech

an
ism

is
tran

sp
a
ren

t
to

clien
ts.

W
h
en

th
e
H
T
T
P
server

receiv
es

an
H
T
T
P
req

u
est

over
U
D
P
,
th
e

req
u
est

ca
n
b
e
forw

a
rd
ed

a
n
d
served

b
y
an
oth

er
server

w
ith

ou
t
fu
rth

er
clien

t
in
volv

em
en
t.

T
h
e
server

th
a
t
sen

d
s
th
e
H
T
T
P
resp

o
n
se

m
u
st

m
a
sq
u
erad

e
as

th
e
�
rst

server,
or

th
e
clien

t
w
ou
ld

n
ot

accep
t
th
e

H
T
T
P
rep

ly.
It

is
in
terestin

g
to

see
th
at

w
e
can

forw
ard

a
sin

gle
H
T
T
P
req

u
est

th
rou

gh
a
ch
ain

of
serv

ers
b
efo

re
w
e
�
n
d
o
n
e
th
at

can
resp

o
n
d
to

th
e
clien

t,
an
d
it
w
ou
ld

still
b
e
com

p
letely

tran
sp
aren

t
to

th
e
clien

ts.

T
h
e
u
se

of
U
D
P

m
a
k
es

th
is

op
tim

iza
tion

p
ossib

le
w
ith

ou
t
an
y
k
ern

el-lev
el

ch
an
ges

in
th
e
server

o
p
era

tin
g
sy
stem

s.
T
h
is
sch

em
e
ca
n
b
e
u
sed

to
im
p
rove

w
eb

cach
e
valid

ation
,
rob

u
st

an
y
castin

g,
an
d

tran
sp
a
ren

t
p
rox

ies.

F
u
rth

erm
o
re,

w
e
can

u
se
H
T
T
P
p
rox

ies
to

in
crem

en
tally

d
ep
loy

th
e
h
y
b
rid

T
C
P
-U
D
P
sch

em
e
w
ith

ou
t

m
o
d
ify
in
g
th
e
in
stalled

clien
t
b
row

sers
(p
lease

see
[3]

for
d
etails).

TCP: SYN

ACK

HTTP GET request

SYN+ACK

Client Server

UDP: HTTP GET request

UDP: retry with TCP

Figure 6: Explicit fall back from UDP to TCP. Server is UDP capable, but the requested resource
warrants use of TCP.

Client Proxy Server
TCP

HTTP

HTTP
hybrid TCP-UDP

Figure 7: Incremental deployment of hybrid TCP-UDP scheme

The hybrid TCP-UDP scheme can be deployed incrementally by using proxy servers. Figure 7
illustrates a scenario, where clients have not yet upgraded, but where the HTTP retrieval in the wide
area takes advantage of our proposal.

Using UDP as the underlying transport protocol does not raise new security concerns. While it is
relatively (compared to TCP) easier for intermediate routers to alter HTTP replies if they are sent
over UDP, the same basic problem exists in TCP and is referred to as TCP hijacking ([2, 7]). It can
be solved using end-to-end data integrity security services, such as cryptographically signed digital
signatures protecting the payload and control information of communications.

The same argument can be brought forward against the possibility of smurf-style denial of service
attacks, where a third party causes many servers to reply to a single client by spoo�ng its source address
on the HTTP/UDP request message, causing the client to be overloaded. [18, x4] classi�es a variety of
solutions against this type of attack.

The hybrid TCP-UDP scheme improves the utility of HTTP for all three entities involved in HTTP
transfers: clients, servers, and the network. The scheme achieves

� reduced browsing latency for clients because latency introduced by the 3-way handshake for TCP
connection establishment is avoided,

� reduced load for servers because fewer TCP connections are set-up, maintained, torn down, and
because fewer packets are processed, and

� reduced network tra�c because fewer TCP control packets are needed.

4 Performance Evaluation

In this section, we quantify the gains obtained by using the hybrid TCP-UDP scheme; our analysis
concentrates on answering the following questions:

� How do the use of persistent HTTP and the choice of connection parameters (e.g., max keep-alive
time, number of concurrent connections) a�ect the savings resulting from the use of the hybrid
scheme?

� How do other network-related parameters, including network loss rates and MTU size a�ect the
savings?

� How are these savings then a�ected by various parameter choices for the hybrid TCP-UDP scheme,
as described in Section 4.2? We are especially interested in the max-udp parameter - UDP is used
only when the HTTP response is small enough to �t within max-udp packets.

Answering these questions, the following sections present the results from several simulations on
our C++/Tcl based simulator. We performed several simulation experiments to answer the above-
mentioned questions - we present here the results from these experiments. We ran these simulations on
our own C++/Tcl based simulator. Our goal was to make the experiments realistic so that the results
obtained can be transposed to implementations. For this reason, we decided against using synthetic
workloads. Instead, we relied on HTTP trace data to drive our simulations. This trace data consists of
18 days' worth of HTTP traces gathered from U.C. Berkeley's Home IP service [5] and of tra�c traces
obtained within Sun Microsystems' internal network. The tra�c for port 80 (HTTP) was recorded.
All other protocols (or ports) were excluded from these traces. The traces [5] amounted to 9 million
connections over 18 days, thereby providing us with about 500K HTTP transfers per day.

To get an initial feeling for the relevance of the approach we �rst derived some basic statistics from
the traces. First, we derived the Cumulative Distribution Function (CDF) of the size of the replied data
in the servers' response. A curve-�tting experiment indicated that a shifted exponential distribution of
the type 1� exp[�:00035(x� 80)] (where x is the reply size in bytes, and 80 is the size of the shortest
reply) provides a very close approximation, in particular for response sizes smaller than 4KBytes. These
data are depicted in Figure 8. A noteworthy result of this distribution is that approximately 40% of
the replies would �t into a single 1500 Byte packet. These results are in line with those reported in [8].

We also examined the statistics of HTTP transactions with respect to persistence. Figures 9 and 10
depict the histogram and CDF of the HTTP transactions that took place over the entire measurement
period. Noteworthy here is the dominance of the occasional transaction. For example, 88% of the source
destination pairs conducted 40 or fewer transactions over the entire period and 98% conducted fewer
than 100 transactions. Examining the inter-arrival times of these pairs reveals that these transactions
where randomly distributed over the entire measurement period.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4000 8000 12000 16000 20000

C
D

F

Response size (bytes)

raw data
fitted curve

Figure 8: CDF of reply size

These results are very encouraging. They indicate that for a vast majority of the transactions per-
sistence would not help because the underlying TCP connection would not stay open long enough to
allow its reuse. Therefore, most connections would have to be reestablished, and, given the distribution
of the reply size, most connections would complete with a very small number of reply packets.

With these encouraging initial results we conducted more elaborate experiments testing the approach
under a variety of parameter changes as indicated above.

4.1 Evaluation Metrics

The following metrics are used for the performance evaluation:

Number of bytes/packets transferred This metric captures the network load, as well as one aspect
of the load on the servers and the clients.

Browsing latency This metric captures the performance as observed by the clients.

Number of connections set up This metric captures one aspect of the load on the servers (extra
work required to set up and maintain TCP connection state, as well as extra cost in searching
Process Control Block (PCB) lists).

The choice of our third metric, number of connections set up, was motivated by the following reasons.
Our packet traces were HTTP logs. It was impossible for us to obtain the inter-packet tra�c patterns
that are needed for the �rst two metrics. Furthermore, the number of connections is the appropriate
metric for evaluating HTTP redirection (as well as cache validation). These requests, and the corre-
sponding responses, tend to be small enough to �t into the minimum-MTU IP packets3. Also, this
metric is linked to the other two metrics. If each HTTP transfer requires a new TCP connection, more
bytes/packets will be seen on the network (connection setup and teardown packets) and clients will
observe extra latency (due to connection setup delays as well as slow-start latency).

3The Internet Protocol requires the underlying network to support IP packets at least as large as 576 bytes ([15, x3:1]).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

200 400 600 800 1000 1200 1400

F
ra

ct
io

n
of

 s
ou

rc
e-

de
st

in
at

io
n

pa
irs

Number of transactions in test period

Figure 9: Histogram of transaction densities

We convert this metric to a unitless ratio (fraction of connections saved) by performing each exper-
iment twice. If an instance requires 100 distinct TCP connections under the current system, and it
requires only 80 distinct TCP connections under the proposed hybrid TCP-UDP scheme, we obtain the
resulting fraction of (100� 80)=100 = 20%.

4.2 Experiments

We performed many sets of experiments, each time varying one of four workload parameters:

Persist This parameter describes the fraction of requests from the clients that support persistent
HTTP. The parameter value ranges from 0.0 to 100.0 - a value of 70.0 implies that 70% of
requests originate from clients that support persistent HTTP.

Loss-rate This parameter describes the fraction of packets that are lost in transit. The parameter
value ranges from 0.0 to 1.0 - a value of 0.10 implies that with 10% probability a packet will be
dropped in the network. For these simulations, we assumed that packet losses are independent
(not bursty - zero correlation). This is a pessimistic assumption because it overstates the number
of connections that will lose at least one packet, thereby diminishing the overall bene�ts of the
hybrid TCP-UDP scheme.

Max-udp This parameter controls the server policy for choosing between use of UDP and TCP in the
hybrid TCP-UDP scheme. A value of max-udp=4 implies the server will try to use UDP for all
conversations where it can send the entire data in up to 4 packets. Otherwise, it directs the client
to use TCP.

MTU This parameter describes the Maximum Transmission Unit (MTU) for packets in the network.
An MTU size of 1460 implies that the network MTU allows for up to 1460 bytes payload (packet
size minus TCP header, IP header, and link-level headers). We assume that the end hosts send
MTU-sized packets whenever possible. The larger the MTU, the more likely it is that the hybrid
TCP-UDP scheme would avoid setting up a TCP connection (we avoid a TCP connection when
HTTP data size is less than MTU � max-udp, and the network does not lose any of these packets).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 400 600 800 1000 1200 1400

C
D

F
 o

f s
ou

rc
e-

de
st

in
at

io
n

pa
irs

Number of transactions in test period

Figure 10: CDF of transaction densities

In our simulations, we included further parameters for controlling the behavior of persistent HTTP.
A keep-alive parameter was set to 60.0, meaning that a persistent HTTP connection would be closed
after 60 seconds of inactivity. Also, a max-connect parameter was set to 1024. Thus, the server will only
support 1024 concurrently active connections. Inactive connections were closed according to a Least

Recently Used (LRU) policy.

4.3 Results

The simulation results were reasonably similar for the various tra�c traces. For all graphs in this
Section, the x-axis quanti�es the varied parameter (e.g., loss rate) and the y-axis quanti�es the evaluation
metric (e.g., fractions of connections saved, expressed as a percentage). Due to space limitations, we
only describe the results of two sets of experiments; please see [3] for more simulation results, as well
as expanded discussion of the design issues.

Loss Rate and Max-Udp

The graph in Figure 11 shows the e�ect of the network packet loss rate and the setting of max-udp
parameter in the server on the overall performance of the hybrid TCP-UDP scheme. For this experiment,
we assumed an MTU of 1460 bytes, as well as full persistence (a very conservative assumption), i.e., all
clients support persistent HTTP, and all requests are multiplexed on existing TCP connections wherever
possible. As the graph shows, with the very conservative policy of setting max-udp value to 1 (use UDP
only if all data from server �ts into one packet), the hybrid scheme gains as much as 18%-19% with
the typical (around 1%) loss rate observed in many intranets, as well as on the Internet. Even with
very high packet losses (around 10% loss rate), the hybrid scheme outperform the traditional mode
by 12%-13%. The graph also depicts the additional bene�ts that using a higher max-udp value would
provide: up to 85% improvement over the current schemes. Even with a max-udp setting of 4 to 10,
we can expect to see bene�ts of 35% to 66%, even under the assumption that persistent HTTP is used
exclusively.

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

 C
on

ne
ct

io
ns

 s
av

ed
 (%

)

 Loss rate (%)

mtu 1460

persist 100.0
max-connect 1024

keepalive 60.0

trace1

max-udp 1
max-udp 4

max-udp 10
max-udp 20

Figure 11: E�ect of loss rate and max-udp parameter

Persistent HTTP and Loss Rate

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

 C
on

ne
ct

io
ns

 s
av

ed
 (%

)

 Persistence (%)

mtu 1460
max-udp 1

max-connect 1024
keepalive 60.0

trace1

loss-rate 0.0
loss-rate 1.0
loss-rate 2.0
loss-rate 5.0

loss-rate 10.0
loss-rate 20.0

Figure 12: Persistence and loss rate (a)

The graphs in Figures 12 and 13 show the e�ect of persistent-HTTP and network packet loss rates on
the overall performance of the hybrid TCP-UDP scheme. The max-udp parameter is set to the value 1
in Figure 12 and the value 4 in Figure 13; the MTU remains 1460 bytes. We performed this experiment
to evaluate the performance in the presence of heterogeneous clients (some support persistent HTTP,
others do not), as well as to see the e�ect of the max-udp parameter in this system. As both �gures show,
the performance is dominated by the presence of non-persistent clients - even with 80% persistence (i.e.,
only 20% do not support persistence), the results are close to the performance with zero persistence.
As expected, the results are a lot better for max-udp of 4 (as compared to max-udp value of 1). As

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

 C
on

ne
ct

io
ns

 s
av

ed
 (%

)

 Persistence (%)

mtu 1460
max-udp 4

max-connect 1024
keepalive 60.0

trace1

loss-rate 0.0
loss-rate 1.0
loss-rate 2.0
loss-rate 5.0

loss-rate 10.0
loss-rate 20.0

Figure 13: Persistence and loss rate (b)

Figure 12 shows, with max-udp set to 1 and with zero persistence, the hybrid scheme provides a gain
of 25%-40% over the traditional schemes, depending on the overall packet loss rate. The gains decrease
very slightly as the persistence parameter increases to well beyond 80%. Even in the presence of 90% to
full persistence, the hybrid scheme provides performance gains of 15% to 30%, except when the packet
loss rate goes up to 20% (i.e., pathological conditions). With the max-udp set to 4, the performance
gains tend to be around 70% for moderate loss rates, decreasing to around 60% for 70%-80% persistence.
Even with 10% packet loss rate, the hybrid scheme gains around 40% at 80% persistence.

Max-udp and loss rate

Figure 14 illustrates the e�ect of the max-udp parameter and the network packet loss rate values
on the overall performance of the hybrid TCP-UDP scheme. We chose worst-case values for the MTU
and the persistence parameters: the MTU parameter is set to the value 460 which re
ects the lower
MTU settings that some people use over 28.8K modems and other low-speed links. Most of the Internet
links, as well as higher-speed links to end-users, however, use higher MTU values (typically around
1.5 KBytes)[9]. We also assume full persistence (i.e., all HTTP transfers are multiplexed on existing
TCP connections whenever possible). We performed this experiment to evaluate the e�ect of max-udp
parameter on the system performance, with varying loss rates. As the graph shows, the performance
gains due to the hybrid TCP-UDP scheme increase steadily with increasing value(s) of the max-udp
parameters, and are slightly reduced under reasonable loss (around 1% packet loss rate). Even in the
presence of relatively high loss rates (around 5%), we observe 15% gains with the max-udp equal to 3.
This result is especially interesting in the context of recent research in increasing the TCP initial window
(to 4 packets or 4KBytes, whichever is lower) [12].

MTU and Loss Rate

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

 C
on

ne
ct

io
ns

 s
av

ed
 (%

)

 Max number of UDP pkts

mtu 460
persist 100.0

max-connect 1024
keepalive 60.0

trace1

loss-rate 0.0
loss-rate 1.0
loss-rate 5.0

loss-rate 10.0
loss-rate 20.0

Figure 14: Max-udp and loss rate

The graphs in Figure 15 and Figure 16 show the e�ect of the network MTU values and packet loss
rates on the overall performance of the hybrid TCP-UDP scheme. The max-udp parameter is set to the
value 4 in Figure 15 and the value 1 in Figure 16; the persistence parameter is set to the value 70% in
Figure 15 and the value 100% (full persistence) in Figure 16. We performed this experiment to evaluate
the performance, for varying MTU values and loss rates, in the presence of heterogeneous clients (some
support persistent HTTP, others do not), as well as to see the e�ect of the max-udp parameter in this
system. As both �gures show, higher MTU values lead to increased performance gains due to the hybrid
TCP-UDP scheme; these gains are reduced somewhat due to the packet losses in the network, but the
gains remain high even with signi�cant (around 2%) packet loss rates. As Figure 15 shows, the gains
are much higher with heterogeneous clients (70% persistence); setting max-udp to 4 results improves
the performance gains, even in the presence of pathological network behavior (10% to 20% packet loss
rate).

4.4 Summary of Simulation Results

The hybrid TCP-UDP scheme provides signi�cant performance gains over the traditional use of TCP
as the only transport protocol for HTTP tra�c. We observed performance gains exceeding 20-25% with
persistent HTTP clients, and over 40-50% with clients without persistent HTTP.

In heterogeneous environments, the system performance was dominated by the presence of non-
persistent clients. Even with 70% to 80% persistence, the performance gains of the hybrid scheme were
close to that of a system with zero persistence.

The hybrid TCP-UDP scheme's performance gains were reduced somewhat by network packet losses,
but the gains remained signi�cant even under pathological network behavior (10% to 20% packet loss
rate).

It is bene�cial to try sending more than 1 packet via UDP, especially if the network MTU is small
(around 500 bytes). However, we must appropriately consider and trade-o� the increased likelihood of
network congestion due to the increase in the max-udp parameter.

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

 C
on

ne
ct

io
ns

 s
av

ed
 (%

)

 MTU (bytes)

max-udp 4
persist 70.0

max-connect 1024
keepalive 60.0

trace1

loss-rate 0.0
loss-rate 1.0
loss-rate 2.0
loss-rate 5.0

loss-rate 10.0
loss-rate 20.0

Figure 15: Maximum Transmission Unit (MTU) and loss rate (a)

5 Conclusions and Outlook

This paper introduced and analyzed a hybrid TCP-UDP transport layer scheme for HTTP. The
hybrid TCP-UDP scheme combines the low cost of using UDP with the high reliability and congestion
control features of TCP. It bene�ts from the low overhead of using UDP for short transfers, and for
large transfers, it is able to use TCP for reliable delivery and good congestion behavior. Our simulation
experiments veri�ed these gains. We observed performance gains exceeding 25% with persistent HTTP
clients, and over 50% for clients without persistent HTTP, even in the presence of high network packet
losses. The performance gains for mixed environments (i.e., clients using persistent HTTP, as well as
traditional HTTP) were similar to those of a system where no clients used persistent HTTP. The hybrid
scheme is attractive because it only requires application-level changes, while the operating system kernel
code can remain unchanged. Finally, the scheme is incrementally deployable in the current Internet and
it is fully compatible with the deployed base.

We are currently exploring some promising optimizations to further improve system performance.
First, the clients can use some heuristics to guess (on a per-transfer or per-session basis) if they can
use UDP for successful transmission. For example, the clients can keep track of whether the server
supports the hybrid scheme at all, or predict the �le size based on the size of the (expired) cached
copy of a previously retrieved version, or assume that the Postscript and PDF �les tend to be large,
while README �les tend to be small. Second, the servers can adapt the max-udp parameter based on
the observed network loss rates. Third, the clients can avoid redundant data retransmissions by using
sub-ranges appropriately.

We also expect that further performance gains can be observed, if recent trends in web tra�c continue.
The increasing use of style sheets will lead to smaller HTTP transfers, and so will the increasing use
of cache validation and HTTP redirection. The performance gains can be further increased by setting
the server policy to use UDP more aggressively (for example, when the data can �t into 4 packets,
analogous to some recent proposals to increase the initial TCP window size[13]).

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

 C
on

ne
ct

io
ns

 s
av

ed
 (%

)

 MTU (bytes)

max-udp 1
persist 100.0

max-connect 1024
keepalive 60.0

trace1

loss-rate 0.0
loss-rate 1.0
loss-rate 5.0

loss-rate 10.0
loss-rate 20.0

Figure 16: Maximum Transmission Unit (MTU) and loss rate (b)

References

[1] Bob Braden. RFC-1644 T/TCP - TCP Extensions for Transactions. Network Working Group,
July 1994.

[2] CERT. IP Spoo�ng Attacks and Hijacked Terminal Connections, CA-95:01. Computer Emergency
Response Team, Carnegie Mellon University, Pittsburgh, Pennsylvania, January 1995.

[3] Israel Cidon, Amit Gupta, Raphael Rom, and Christoph Schuba. Hybrid TCP-UDP Transport for
Web Tra�c. Technical Report TR-98-71, Sun Microsystems Laboratories, Palo Alto, California,
December 1998. Available at http://www.sunlabs.com/projects/hsn/papers/hybrid.ps.

[4] Roy T. Fielding, Jim Gettys, Je�rey C. Mogul, Henrik Frystyk Nielsen, and Tim Berners-Lee.
RFC-2068 Hypertext Transfer Protocol { HTTP/1.1. Network Working Group, January 1997.

[5] Steven D. Gribble. UC Berkeley Home IP HTTP traces. July 1997. Available at http://www.acm.
org/sigcomm/ITA/.

[6] John Heidemann, Katia Obraczka, and Joe Touch. Modeling the Performance of HTTP Over
Several Transport Protocols. IEEE/ACM Transactions on Networking, 5(5):616{630, October
1997.

[7] Laurent Joncheray. A Simple Active Attack Against TCP. In Proceedings of the 5th UNIX Security

Symposium, pages 7{19, Salt Lake City, Utah, June 1995. USENIX.

[8] Bruce Mah. An Empirical Model of HTTP Network Tra�c. In Proceedings of Infocom'97, pages
593{600, Kobe, Japan, April 1997.

[9] Je�rey Mogul and Steve Deering. Path MTU Discovery. Arpanet Working Group Requests for
Comment, DDN Network Information Center, SRI International, Menlo Park, CA, November 1990.
RFC-1191.

[10] B. Cli�ord Neuman. The Virtual System Model: A Scalable Approach to Organizing Large Systems.
PhD thesis, University of Seattle, Washington, 1992.

[11] Venkata N. Padmanabhan. Private communication, 1997.

[12] K. Poduri and K. Nichols. Simulation studies of increased initial tcp window size, February 1999.
Internet Draft expires 8/98.

[13] Kedarnath Poduri and Kathleen Nichols. RFC-2415 Simulation studies of increased initial TCP

window size. Network Working Group, September 1998.

[14] Jon Postel, editor. RFC-768 User Datagram Protocol. Network Information Center, August 1980.

[15] Jon Postel, editor. RFC-791 Internet Protocol. Information Science Institute, University of South-
ern California, September 1981.

[16] Jon Postel, editor. RFC-792 Internet Control Message Protocol. Information Sciences Institute,
University of Southern California, September 1981.

[17] Jon Postel, editor. RFC-793 Transmission Control Protocol. Information Sciences Institute, Uni-
versity of Southern California, September 1981.

[18] Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. Spa�ord, Aurobindo Sundaram,
and Diego Zamboni. Analysis of a Denial of Service Attack on TCP. In Proceedings of the Sympo-

sium on Security and Privacy, pages 208{223, Oakland, California, May 1997. IEEE.

