
On the Maintenance of Low Cost Multicast Trees with Bandwidth

Reservation

Dirceu Cavendish�, Aiguo Fei, Mario Gerla y Raphael Rom

Department of Computer Science Faculty of Electrical Engineering

University of California,Los Angeles CA 90024 Israel Institute of Technology Haifa 32000 Israel

fdirceu,afei,gerlag@cs.ucla.edu rom@ee.technion.ac.il

Abstract

Emerging multimedia network technologies are bringing new challenges to protocols design, due to

new QoS requirements. These requirements, when combined with traditional network functions, such

as routing, render the design of such protocols more complex than ever before. Resource reservation

is one of the novel features brought into the picture by multimedia applications. Another is the many-

to-many nature of multicast connections. We have recently proposed a routing algorithm to build

low cost multicast trees. In this paper, we study the maintenance of these multicast trees, in the

face of multicast membership changes over time (join/leave). One of the key issues is the tradeo�

between the incremental upgrade at each join/leave request and the recomputation of the entire tree

at each step. Simulation results are used to illustrate these trade o�s. A signalling mechanism for

the implementation of the incremental tree updating is also included.

Technical Subject Areas: Broadband Switching Systems and ATM Networks, Multimedia and

Broadband Services.

1 Introduction

One of the new challenges brought on by multimedia network technologies, such as ATM and the next

generation Internet, is routing with resource reservations. By incorporating resource reservation into a

routing algorithm, the chance that the resources required for carrying a given connection be available at

connection setup time is greatly increased. Therefore, sucessful response to connection request depends

heavily on the routing algorithm used.

In a QOS environment, routing algorithms must provide routes which conform with users end-to-end

requirements while minimizing the cost of a connection. A connection cost is de�ned as the sum of

the costs of individual links participating in the connection. Link costs can be assigned in various

ways. Generally, they should re
ect the desirability of using a given link as part of a connection path.

�Corresponding author - Fax # : (310) 825-7578
yThis work was partially supported by CNPq under Grant 201597/93-4(NV)

1



Oftentimes, hop count is the metric used, which amounts to assigning a uniform cost of one to all

network links.

QOS requirements translate into path constraints for a routing algorithm, and impact its computation

complexity. Complexity is a major concern in network scalability since the routing algorithm must

sometimes run in real time, specially in case of multicast connections. A given application may not

a�ord to wait too long for a routing algorithm to compute a QOS suitable path, before a connection

setup signalling can be initiated. Moreover, if route computation takes too long, topology information

in which this computation is performed is likely to become stalled, leading to a higher probability of

having a connection setup failure.

The �rst, and perhaps most important network resource is bandwidth. We assume a link state routing

strategy, as in PNNI ATM technology or in Internet OSPF used as a Interior Gateway routing Protocol

(IGP), where each route computation site knows about resources along the links of the entire network.

The problem of routing unicast (one-to-one) unidirectional connections with bandwidth reservation was

shown to be solved by a Dijkstra type algorithm [Wang95] for link state routing. Multicast tra�c is

typically carried through one (Core Based Tree) or more (Distance Vector Multicast Routing Protocol)

multicast trees [Deering96], for e�ciency of network resources.

In [Cavendish98], we have addressed the problem of constructing multicast trees, so as to provide not

only connectivity among members of a multicast connection, but also bandwidth necessary to carry the

tra�c injected by multicast members. In this paper, we study mechanisms to maintain these multicast

trees, when multicast membership changes due to the join/leave activity within the group.

The paper is organized as follows. Section 2 describes related work. Section 3 reviews the Bandwidth

Constrained Steiner Tree (BCST) and the Bidirect-Dijkstra algorithms, introduced in [Cavendish98].

Section 4 describes the join/leave procedures for maintenance of a multicast group, including the sig-

nalling mechanism. In section 5, we show simulation experiments on join/leave routing operations. We

conclude the paper in the last section.

2 Related Work

As mentioned earlier, the most important network resource to be allocated by a QOS network is band-

width. Bandwidth constrained unicast (pt-pt) routing has been shown to be of polynomial complexity

[Wang95], and thus scalable with the size of the network. The idea is to disregard any link which

does not have enough available bandwidth to carry the bandwidth required by the single source in

the computation of a minimum cost path. Using the same strategy for point-to-multipoint (pt-mtp)

connections, a minimum cost spanning tree can be constructed with the same polynomial complexity.

However, for truly multicast connections (mtp-mtp), we are indeed facing a NP-Complete problem.

Although the problem of constructing Steiner trees is hardly new (e.g. [Smith83]), its study has been

intensi�ed in the last ten years due to its direct applicability to multimedia networks [Frank85, Makki95].

Moreover, multimedia connections are likely to add some constraints to feasible trees, such as bandwidth

and delay. Research work on the construction of Steiner trees with such constraints is less abundant in

the literature. Among these, [Jiang91] surveys algorithms which are able to compute a set of Steiner

trees of whose total bandwidth capacity matches the needs of multicast members. The work is limited,

however, in a sense that it assumes that every multicast member has the same bandwidth needs, and

does not provide performance guarantees of any kind. [Ravi95] establishes hard results, and proposes
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algorithms for the construction of constrained Steiner tree problems, where the constraints are the

diameter of the tree and the maximum degree of a vertex. It also provides worst case guarantees for

algorithms performance. Our previous contribution [Cavendish98] has extended that work in providing

algorithms for constructing low cost Steiner trees with bandwidth constraints and worst case guarantees,

for many-to-many casting applications.

Regarding the maintenance of multicast trees, there is a signi�cant amount of work for the un-

constrained routing problem [Waxman88, Westbrook93, Bauer96]. However, the maintainance of con-

strained multicast trees is a recent research topic. [Bauer96] has proposed that a member join/drop

procedure join/leave a�ect a small sub-domain of the multicast tree only. This approach, although

attractive, is not applicable to a bandwidth constrained multicast tree problem, due to the fact that a

new member might require additional bandwidth along the entire tree.

3 Bandwidth Constrained Steiner Tree Construction

We model our network as a directed graph G(V;E) where V is the set of nodes and E the set of directed

edges. We refer to the link (i; j) as the pair of edges (i; j) and (j; i). We associate two values with every

edge (i; j) 2 V : a positive weight w(i; j) and a nonnegative (bandwidth) capacity b(i; j). Let S � V ,

D � V be source and destination subsets of V , such that 8i 2 S, we associate Bi � 0 as the bandwidth

needed by source i.

De�ne a multipoint connectivity structure (MCS) �(V 0; E0) as a connected subgraph of G(V;E)

containing at least the nodes S [D and having at least one path from each node s 2 S to every node

d 2 D. The bandwidth and weights associated with an edge in � are those associated with the original

edges of G.

Let S(i; j) � S be the subset of sources contributing 
ow to edge (i; j). Then:

De�nition 1 An edge (i; j) is said to be underloaded if:

b(i; j) �
X

p2S(i;j)

Bp (1)

otherwise, the link is said to be overloaded.

A link is underloaded if both edges comprising it are underloaded. An MCS is called feasible if all its

edges are underloaded. The weight or cost of an MCS is the sum the weights of its edges.

3.1 The bidirectional connection

The simplest multipoint-to-multipoint (mtp-mtp) connection that one may conceive is a bidirectional

unicast connection. In this case, S = D = fs; dg. Thus, we require that the MCS be a single bidirectional

path connecting (s; d). To proceed, we need the following simple de�nitions:
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De�nition 2 The length dcp(s; d) of a path p(s; d) under cost function c is de�ned as:

dcp(s; d) =

8>>><
>>>:

P
(i;j)2p(s;d) c(i; j)

if 8(i; j) 2 p(s; d); b(i; j) � Bs and b(j; i) � Bd

1

otherwise
i.e. the path length is the sum of its link lengths if its edge components are all underloaded. Otherwise,

the path length is assumed to be 1.

De�nition 3 The shortest path between (s; d) with respect to the cost function c is:

�c(s; d) = min
p2P

dcp(s; d)

where P is the set of all p(s; d) paths.

In [Cavendish98], we propose a Dijkstra type of algorithm to solve the single bidirectional path min-

cost problem. The algorithm is called Bidirect Dijkstra (BD-Dijkstra), and is similar to the original

Dijkstra algorithm. The di�erence is that only links which have su�cient bandwidth in both direc-

tions are considered in a relaxation step. BD-Dijkstra's pseudo-code is presented below. Its proof of

correctness and complexity analysis can be found in [Cavendish97].

BD-DIJKSTRA G(V,E) algorithm
BD-Initialize(G,s);

S  fg, Q V [G];

while Q 6= 0 do

u= BD-Extract-Min(Q; d);

S  S [ fug;

For each vertex v 2 Adj[u] do

BD-Relax(Bs; Bd; u; v; b(u; v); b(v; u); c(u; v));

BD-Initialize(G,s)
For each vertex v 2 V [G]

Do d[v] 1; �[v] = NIL ;

d[s] 0;

BD-Extract-Min(Q,d)
dmin  1; u NAN ;

For i 2 Q do

If (d[i] < dmin)

f dmin  d[i]; u i;g

RETURN u;

BD-Relax(Bs; Bd; u; v; b(u; v); b(v; u); c(u; v))
If ((Bs < b(u; v))and(Bd < b(v; u)))

fw(u; v) = c(u; v);g

else

fw(u; v) =1;g

If (d[v] > d[u] + w(u; v))

d[v] d[u] +w(u; v);

�[v] u;
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3.2 Multicast Tree Problems

For larger S and D sets, we are interested on a particular Multipoint Connectivity Structure (MCS),

called multicast tree, which we now de�ne:

De�nition 4 A multicast tree (mtree) MT (E0; V 0) is an acyclic MCS �(E0; V 0); E0 � E; V 0 � V

providing connectivity to every m 2 S [D.

One can easily see that an mtree is a Direct Acyclic Graph (DAG). Mtrees inherit the same feasibility

de�nition as for any MCS. Regarding the construction of feasible mtrees, our problem of interest is:

Problem 1 Construct a feasible mtree of minimum cost.

A feasible mtree is depicted in Figure 1. The link label (Bd;Bu) represents the bandwidth allocated

downstream, Bd, and upstream, Bu, respectively.

S1,B1 S2,B2

S3,B3

D1

D2
D3

(B1,0)

(B1,0)

(B1+B2,0)

(B1+B2,B3)

(B1+B2+B3,0)

(0,B3)

(B1+B2,B3)

(0,B1+B2+B3)

(0,B1+B2+B3)

(B2,0)

(B2,0)

Bd Bu =(Bd,Bu)

N1
N2

N3

N4

N5

N6

Figure 1: Feasible mtree. Only link bandwidths are shown

3.3 A cluster algorithm for low cost mtrees

The basic idea is to design an algorithm that works in phases [Ravi95]. In each phase, the algorithm

connects a given number n of clusters together which were previously disconnected. The algorithm will

stop after lognK phases, for a multicast group of size K. The BCST-algorithm pseudo-code follows:
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BCST-algorithms

1 Initialize the set of clusters in phase 1, �1, to contain j S[D j singleton sets, one for each member

of the multicast connection. De�ne the single vertex as the \center" or head of its respective

cluster. i = 1.

2 Repeat until there remains a single cluster in �i:

2.1 Construct a complete graph Gi(Ei; Vi) as follows: v 2 Vi i� v is a center of a cluster in

�i. Between every pair of vertices (x; y); x; v 2 Vi, include an edge in Ei of cost de�ned

as the minimum path cost, computed by BD-Dijkstra, between these two vertices in which

the bidirectional bandwidth constraint de�ned by the clusters bandwidths is required. The

clusters bandwidth is de�ned to be the bandwidth required by the cluster head.

2.2 Find a minimum cost matching of largest cardinality in Gi [Goemans93].

2.3 For each edge (x; y) selected in the matching, merge their respective clusters Cx; Cy, by

adding the path in the original graph corresponding to that edge to form cluster Cxy. The

vertex (edge) set of the newly formed cluster is de�ned to be the union of the vertices (edges)

of its cluster components, plus the vertices (edges) of the connecting path.

2.4 Elect randomly a new cluster head for each newly formed cluster. i = i+ 1.

BCST-Algorithm maintains a set of clusters �i in each phase i. Each cluster is formed by multicast

members which are already connected among themselves. An analysis of the BCST-algorithm, together

with hard bounds on cost and bandwidth overload, is presented in [Cavendish98]. It su�ces to say that

BCST-algorithm is able to compute low cost multicast trees with O(logKjV 2j log jV j) time complexity,

where K is the size of the multicast group.

A typical run of the algorithm, for jV j = n = 16, is depicted in Figure 2. In the upper left square (a),

a randomly generated instance of a 16 node topology is depicted. The next four squares (b,c,d,e) show

a sequence of four phases that the algorithm goes through to build the multicast tree. The smallest dots

are network vertices which are neither sources nor destinations. Dots surrounded by a gray circle are

cluster heads in a given phase. Links in these middle squares are sets of shortest paths between cluster

heads which de�ne a low cost matching. The lower right square (f) depicts the �nal multicast tree.
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Figure 2: Four phases of a BCST-algorithm

4 Multicast Tree Maintenance

Membership of a multicast group is expected to vary greatly during the lifetime of the connection,

for most applications. The join/drop operations have the e�ect of changing the original tree topology.

Therefore, we must make sure that, at all times, the multicast tree keeps its suitability to transport

the multicast tra�c regardless its changes. Mtree suitability translates into both compliance with the

constraints and low cost.

The join of a new multicast member is a more delicate operation than the drop. Most constrained

multicast trees remain feasible if some tree edges are pruned o�, regardless of the type of constrain.

Therefore, we start with the drop operation.

4.1 Drop of a multicast member

Starting with a feasible mtree, it is obvious that the drop of a multicast member does not a�ect the tree

feasibility. Therefore, we need to concentrate our attention on the tree cost only. The drop operation

should result in the pruning o� of the no longer necessary links of the original tree. These links are the

ones to be traversed by following the tree from the party to be dropped towards the other members

until a fork point is hit (a vertex with degree greater than 2), if this party is a leaf in the tree. If the

party is an internal tree node, no link pruning results from the drop operation. Bandwidth release must

be performed at appropriate mtree links. Figure 3 illustrates the drop of a sender S3 with bandwidth

B3.
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DropMember(m,Mtree)

1 Prune o� Mtree by deleting links from m until the �rst mtree fork is encountered.

2 Update other Mtree links by subtracting the bandwidth used for member m in/out 
ows.

S1,B1 S2,B2

S3,B3

D1

D2
D3

(B1,0)

(B1,0)

(B1+B2,0)

(B1+B2,B3)

(B1+B2+B3,0)

(0,B3)

(B1+B2,B3)

(0,B1+B2+B3)

(0,B1+B2+B3)

(B2,0)

(B2,0)

Bd Bu =(Bd,Bu)

Dropping
Party

X

X

X X
X

X

N1
N2

N3

N4

N5

N6

Figure 3: Drop operation from a bandwidth constrained mtree

We �rst observe that:

Theorem 1 Upon a drop of a multicast member from the minimum cost mtree, the mtree resulting by

pruning o� unnecessary links which connect the droping member to the rest of the tree is not necessarily

a minimum cost tree for the new multicast group.

Proof of Theorem 1 By counter-example. Consider the example shown in Figure 4. A multicast

group of three members, fSD1; SD2; SD3g, both sources and destinations, with uniform bandwidth

requirement of 1 is depicted. The network has only four links, three of which are part of the minimum

cost mtree, Mtree = f(a; b); (b; c); (b; d)g, with uniform bandwidth (1; 2). The extra link, (a; c), has

bandwidth (1; 2), thus insu�cient to be part of the mtree. For sake of simplicity, link costs are assumed

proportional to the euclidean distances. Upon the departure of SD2 from the multicast group, the mtree

resulting from the pruning o� of link (b; d), Mtree1 = f(a; b); (b; c)g, is clearly more expensive than the

single link mtree Mtree2 = f(a; c)g, which now has become feasible.
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SD1,1 SD2,1

SD3,1

(1,2)

(1,1) Bd Bu =(Bd,Bu)

Dropping
Party(1,2)

(2,1)

a

b

c

d

Figure 4: Drop operation from a minimum cost bandwidth constrained mtree

Theorem 1 states that sub-optimal mtrees may result from a drop operation. Therefore, a decision

has to be made if/when the recostruction of the mtree is necessary. Since the construction of a minimum

cost bandwidth constrained mtree is an NP-Complete problem [Cavendish97], it is also possible that the

computation of a new tree by BCST-algorithm results in a more expensive tree than the existing one,

although this is highly unlikely in non-degenerate instances of the problem. However, the computation

of a new tree by BCST-algorithm may result in an unfeasible tree. We defer the discussion of this topic

to the simulation section.

4.2 Join of a multicast member

Although the drop operation has similar tradeo�s for any type of mtree constraints, this is not the

case for a join operation. The join operation to a bandwidth constrained mtree has a major di�erence

from, for instance, the join operation to a delay constrained mtree. In the latter, the violation of the

constraint a�ects the communication between the new member and the other members of the group

only. It does not a�ect the communications among old members. In the former, an overload on a link

caused by a badly joined new member may potentially cause damage to the communications among all

multicast members. Of course we can always reject the join request, in case an overload link(s) results.

However, we do not have the option of \living" with the overload, as in the delay constrained case.

Figure 5 illustrates the point.
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S1,B1 S2,B2

S3,B3

D1

D2
D3

(B1,0)

(B1,0)

(B1+B2,0)

(B1+B2+B4,B3)

(B1+B2+B3+B4,0)

(0,B3)

(B1+B2+B4,B3)

(0,B1+B2+B3+B4)

(0,B1+B2+B3+B4)

(B2,0)

(B2,0)

Bd Bu =(Bd,Bu)

S4,B4

Joining 
Party

Links affected by
the join operation

Joining path

N1
N2

N3

N4

N5

N6

Figure 5: Join of a new member to a bandwidth sensitive multicast tree.

Unlike the drop operation, as long as a joining node has bandwidth requirements of its own, we need

to care about tree feasibility in addition to cost. Moreover, the join of a new member includes the

de�nition of a suitable (bandwidth) path to connect the member with the original tree, which involves

the de�nition of an entry point to the tree. Potentially, any mtree node may become an entry point.

The path (and corresponding entry point) should be such that not only the necessary bandwidth be

available at the path itself, but also the connecting point on the tree be such that the mtree remains

feasible. Two cases are relevant, regarding tree feasibility: the new member is a destination, i.e. it

does not have any bandwidth requirement; the new member is also a source, in which case additional

bandwidth to be injected into the mtree is a concern.

For a new destination member, the path connecting the member with the tree must have bandwidth

requirement of B =
P

p2S Bp from the tree to the new member, and zero in the opposite direction.

Regarding the entry point, members which are destinations are the preferred nodes, since all multicast

tra�c converges to these points already. Hence, bandwidth constraints on the mtree links remain

unaltered. Figure 6 illustrates the join operation of a destination member.
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S1,B1 S2,B2

S3,B3

D1

D2
D3

(B1,0)

(B1,0)

(B1+B2,0)

(B1+B2,B3)

(B1+B2+B3,0)

(0,B3)

(B1+B2,B3)

(0,B1+B2+B3)

(0,B1+B2+B3)

(B2,0)

(B2,0)

Bd Bu =(Bd,Bu)

D4

Joining 
Party

A less preferred path

Preferred paths

N1
N2

N3

N4

N5

N6

Figure 6: The join of a new destination multicast member

The destination join procedure is, then:

JoinDestination(d,Mtree)

1 Compute bidirectional shortest path to every destination member, using BD � Dijkstra with

bandwidth constraints of (0;
P

p2S Bp).

2 Choose the shortest path among all computed paths.

3 If no feasible path is available, compute shortest path to all remaining nodes, with same bandwidth

constraints as before.

3.1 In increasing path length, check mtree feasibility.

3.2 If no feasible path is available, reject the join request.

4 Update Mtree links' bandwidth accordingly.

Notice that the mtree feasibility check is necessary only if the entry point is not a destination member.

Since BD-Dijkstra has O(jV j log jV j) complexity, and feasibility check has O(jV j) (a tree has at most

jV j � 1 links), JoinDestination has worst case time of O(M jV j log jV j), where M = jS [Dj.

For a new source member s, the path connecting the member with the tree must have bandwidth

requirement of B =
P

p2S Bp from the tree to the new member, and Bs in the opposite direction.

Regarding the entry point, members which are destinations are preferred over other nodes only if the

new member is also a destination, for the same reason as before. Otherwise, any mtree node is equally

likely to be the entry point. Figure 7 illustrates the join operation of a source member.

11



S1,B1 S2,B2

S3,B3

D1

D2
D3

(B1,0)

(B1,0)

(B1+B2,0)

(B1+B2,B3)
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(0,B3)

(B1+B2,B3)

(0,B1+B2+B3)

(0,B1+B2+B3)

(B2,0)

(B2,0)
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Joining 
Party

A less preferred path

Preferred paths
only if S4 is also a destination

S4,B4

N1
N2

N3

N4

N5

N6

Figure 7: The join of a new source multicast member

The source join procedure is, then:

JoinSource(s,Mtree)

1 If source is also a destination: Compute bidirectional shortest path to every destination member,

using BD �Dijkstra with bandwidth constraints of (Bs;
P

p2S Bp).

1.1 In order of increasing path length, check mtree feasibility.

2 If no feasible path is available, compute shortest path to all remaining nodes, with same bandwidth

constraints as before.

2.1 In order of increasing path length, check mtree feasibility.

2.2 If no feasible path is available, reject the join request.

4 Update Mtree links' bandwidth accordingly.

For the same arguments as before, JoinSource has worst case time of O(M jV j log jV j), where M =

jS [Dj.

Regarding cost of the new mtree, Theorem 2 is the counterpart of Theorem 1:

Theorem 2 Upon a join of a multicast member from the minimum cost mtree, the mtree resulting by

accrueing the links which connect the joining member to the rest of the tree is not necessarily a minimum

cost tree for the new multicast group.
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Proof of Theorem 2 By contradiction or counter-example. We choose the former. If a new minimum

cost n-member mtree could be obtained from the join of a member to the (n-1)-member minimum cost

mtree, then any minimum cost mtree could be built from scratch by �rst connecting two members using

BD-Dijkstra, and then adding one-by-one the remaining group members, all in polynomial time. But

[Cavendish97] has proven that the building of a bandwidth constrained minimum cost Steiner Tree is an

NP-Complete problem.

In [Bauer96], it has been proposed that a member join/drop procedure a�ect only a small sub-domain

of the multicast tree. This approach, although attractive, is not applicable to our problem. This is

because bandwidth must be reserved across the entire mtree, in order to support a new source member.

Since [Bauer96] considers unconstrained mtrees only, any approximation scheme would impact on an

extra increase in the cost of the mtree. In our case, rearranging parts of the tree could be disastrous in

terms of bandwidth reservation across the links outside of the rearranged domain.

4.3 Signalling and Implementation Issues

In this subsection, we describe a signalling mechanism to carry out the changes in bandwidth reservation

triggered by join/leave requests. We assume that packet interleaving from various sources can be

appropriatly handled at destination sites. For completeness, we �rst describe the signalling involved in

an mtree setup.

For sake of example, assume that the mtree shown in Fig. 1 is to be built. Basically, any multicast

member site can compute the tree, as long as it knows the initial multicast membership. Let S1 be the

site in which the mtree was computed. Following the computation of the mtree by BCST-algorithm,

S1 builds a SETUP message that must \traverse" the tree so as to reserve the bandwidth necessary in

the various links. We propose that this traversal be in a circuit or loop fashion, so as to facilitate the

handling of pointers. A similar scheme is proposed in [OPENET95]. The SETUP message is a source

routed message, containing a sequence of pairs - (node ID, bandwidth) - to be traversed/reserved. In

this example, the complete message would be:

SETUP = f(N1,B1), (N3,B1), (N4,B1+B2), (N5,B1+B2), (D2,B1+B2+B3), (N5,0),

(N6,B1+B2),(S3,0), (N6,B3), (D3,B1+B2+B3), (N6,0), (N5,B3), (N4,B3),

(D1,B1+B2+B3), (N4,0), (N3,0), (N2,0), (S2,0), (N2,B2), (N3,B2), (N1,0), (S1,0)g.

Thus, the �rst entry, (N1; B1), allocates bandwidth B1 on the link (S1; N1), and so on. In case

the reservation SETUP fails at any given point, a RELEASE message is generated from the point of

failure in the reverse direction, in order to deallocate the bandwidth already reserved. For instance,

if link (N3; N4) has less than B1 + B2 available bandwidth, it will generate a reverse message as:

RELEASE = f(N3; B1 + B2); (N1; B1); (S1; B1)g. We assume there is a bit indicating in which

direction the bandwidth is a�ected by the packet, either in the direction it travels (FWD), or in the

opposite direction (BWD). Thus, a RELEASE message followed by a reservation failure is a BWD type

of message, since it a�ects bandwidth reservation in the opposite direction of its traversal. A setup

message, on the other hand, is a FWD message, since it a�ects bandwidth reservation in its traversal

direction.

In a join/drop operation, the multicast member wishing to join/drop is assumed to have not only

network topology information but also have information about the mtree topology. There are two ways

for a new member to learn about mtree topology: by broadcasting a packet across the network, asking
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for such information - multicast members will reply with the mtree topology; or by asking directly a

\well known" multicast member about the mtree topology. The �rst method is wasteful, since multiple

members might reply simultaneously, wasting network resources. We believe the second one to be more

practical, since oftentimes a new member knows a multicast group by the leading member.

For a drop operation, the dropping party builds a (FWD) RELEASE message similar to the SETUP

message. The bandwidth reported in such message, as in the setup failure case, is the amount of

bandwidth to be deallocated at each hop of the mtree. For instance, in Fig. 3 the message generated

by S3 would be:

RELEASE(FWD) = f(N6,B3),(D3,B3), (N6,0), (N5,B3), (N4,B3), (D1,B3),

(N4,0), (N3,0), (N2,0), (S2,0), (N2,0), (N3,0), (N1,0), (S1,0),

(N1,0), (N3,0), (N4,0), (N5,0), (D2,B3), (N5,0), (N6,0), (S3,0)g.

Notice that shortcuts are possible, if the member executing the operation is smart enough to compute

such short traversal paths. For instance,

RELEASE(FWD) = f(N6,B3),(D3,B3), (N6,0), (N5,B3), (N4,B3), (D1,B3),

(N4,0), (N5,0), (D2,B3), (N5,0), (N6,0), (S3,0)g

could be used by S3 to release its bandwidth 1.

For a join operation, once the joining path is computed, an ADD-PARTY message is constructed,

similar to the SETUP message, requesting only the amount of extra bandwidth needed by the new

member. In the example of Fig. 5, assume, for simplicity, that the joining path is a one link path. S4,

then, will issue the (shortcut) message:

ADD-PARTY = f(N4,B4), (N5,B4), (D2,B4), (N5,0), (N6,B4), (S3,0),

(N6,0), (D3,B4), (N6,0), (N5,0), (N4,0), (D1,B4), (N4,0), (S4,0)g.

For a join of a destination party into the multicast group, as in Fig. 6, in most cases a very short

message can be used, if the new member joins the group at a destination site. Assuming a one link joining

path (D4;D2), the ADD-PARTY message would be: ADD�PARTY = f(D2; 0); (D4; B1+B2+B3)g.

Notice that an ADD-PARTY message may fail to reserve bandwidth at a particular mtree link. In this

case, similarly to the SETUP case, a reverse RELEASE message rolls back the reservations to where

they were before the ADD-PARTY was issued.

5 Simulation Study

As in [Cavendish98], we have adopted the Euclidean distance between any two vertices i; j as the cost

of link (i; j). Each problem instance is generated as follows. jV j = n vertices are randomly placed on a

grid. Among n(n� 1)=2 links of the complete graph formed by the pairwise distances, a connectivity

factor Cf is used to prune o� the (1�Cf ) � n(n� 1) longest links. Edge bandwidths are independently

chosen from a U(Bmin; Bmax) uniform distribution. A vertex is designated as a source with probability

ps and a destination with probability pd (hence the number of sources and destinations has a binomial

distribution). Source tra�c rates (i.e, required bandwidths) are chosen from a U(0; Bs), where Bs is

computed by:

1Notice that, if a dropping party is both source and destination, the traversal of the whole tree might be necessary, in

order to release bandwidth used by the member 
ow in (source) and out (sink) of the network
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Bs =
Bmin +Bmax

n � ps
� hf (2)

Equation 2 is such that hf gives a percentage of the average link bandwidth per source as compared

with the average source bandwidth. In other words, BT = n�Bs=2 being the total average bandwidth

requested by the multicast connection, and Be = (Bmin + Bmax)=2 the average edge bandwidth, hf =

BT =Be is a hardness factor for a given problem. Heavy load and light load situations can be simulated

by varying hf within the (0; 1) interval.

For each multicast routing problem generated, we use BCST-algorithm to compute the initial mtree.

Once the tree is found, two set of experiments are conducted: a series of drop operations upon the

mtree; a series of join operations upon the mtree. In order to evaluate how the mtree cost is a�ected

along membership activity, for each join/drop operation, we compute the cost of the resulting tree, and

also recompute the entire tree, as in a new problem. In the set of �gures that follows, we report the

ratio of these two quantities. Each point represents an average of 1000 randomly generated instances of

size jV j = 32 vertices. By varying hf , we are able to simulate light and heavy network load situations,

as mentioned before. We have also experimented with various graph connectivity degrees. We present

the most representative results only (heavy loaded networks with �xed graph connectivity), for sake of

conciseness.
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Figure 8: Incremental Multicast cost/performance tradeo�s

In Figure 8, the main experimental results are reported. In each plot, incremental (inc) and recom-

putation (rec) strategies are evaluated, for both light and heavy load cases. Figures 8 a) and b) show

the success ratio (i.e. fraction of accepted joins/leaves) when updating the mtree incrementally as well

as computing an entire new tree. For a source join (Fig. 8 a), incremental update has always better

chance of success, regardless of network load (heavy/light). For a destination join (Fig. 8 b), the only

case in which recomputation of the mtree is to be avoided is in heavy load. For drop operations (Fig. 8

c), we notice that incremental drop always succeed. The recomputation of the mtree should be avoided

in the drop operation. The fact that the reoptimization of the tree at each step does not lead to a better

success ratio is counter -intuitive. It is not surprising, however, since it con�rms trends noted in other

problems such as routing of connections in a circuit switched network and bin packing problems.

Another key performance measure is, of course, cost. Figure 8 d) reports the mtree cost increase

when sources and destinations incrementally join the multicast group. The interesting curves are the
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ones which depart from the 1.0 ratio, because this means an mtree recomputation pays o� in terms

of cost. These are destination join, under heavy load, and source join, irrespective of network load

condition. An inspection of the previous �gures show that these are exactly the cases in which the

success ratio of recomputations declines, as compared with incremental mtree computation. Therefore,

there is a clear trade o� in cost gain versus mtree update success probability. A routing strategy

driven by minimizing the cost of the mtree will not only disrupt more severely the multicast connection

by completely rebuilding the mtree, but it will also fail more often in �nding a feasible mtree, thus

causing extra blocking. Of course, a strategy of trying both approaches in parallel could be exercised,

if computation time is not an issue.

6 Conclusion and Future Work

In this paper, we have analysed the problem of maintaining a low cost feasible Steiner Tree which is

constrained by bandwidth requirements of its connecting vertices upon incremental join/drop of new

vertices. This problem �nds applications in multimedia networks, in which source/destination sites with

well de�ned bandwidth requirements, dynamically join/drop a given multicast group. We have de�ned

apropriate join/drop procedures in order to keep tree feasibility and low cost. We have compared various

performance tradeo�s in a simulation study.

We are currently investigating appropriate algorithms to build Steiner Trees with multiple constraints

(say bandwidth, delay). The study of the evolution of such trees under join/drop operations is also

topic for future research.
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